GHz突发模式飞秒激光脉冲在晶体硅上形成二维激光诱导的周期性表面结构

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Extreme Manufacturing Pub Date : 2023-01-07 DOI:10.1088/2631-7990/acb133
Shota Kawabata, Shi Bai, K. Obata, G. Miyaji, K. Sugioka
{"title":"GHz突发模式飞秒激光脉冲在晶体硅上形成二维激光诱导的周期性表面结构","authors":"Shota Kawabata, Shi Bai, K. Obata, G. Miyaji, K. Sugioka","doi":"10.1088/2631-7990/acb133","DOIUrl":null,"url":null,"abstract":"Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that cannot be obtained by the conventional irradiation scheme of femtosecond laser pulses (single-pulse mode). However, most studies using the GHz burst mode femtosecond laser pulses focus on ablation of materials to achieve high-efficiency and high-quality material removal. In this study, we explore the ability of the GHz burst mode femtosecond laser processing to form laser-induced periodic surface structures (LIPSS) on silicon. It is well known that the direction of LIPSS formed by the single-pulse mode with linearly polarized laser pulses is typically perpendicular to the laser polarization direction. In contrast, we find that the GHz burst mode femtosecond laser (wavelength: 1030 nm, intra-pulse duration: 220 fs, intra-pulse interval time (intra-pulse repetition rate): 205 ps (4.88 GHz), burst pulse repetition rate: 200 kHz) creates unique two-dimensional (2D) LIPSS. We regard the formation mechanism of 2D LIPSS as the synergetic contribution of the electromagnetic mechanism and the hydrodynamic mechanism. Specifically, generation of hot spots with highly enhanced electric fields by the localized surface plasmon resonance of subsequent pulses in the bursts within the nanogrooves of one-dimensional LIPSS formed by the preceding pulses creates 2D LIPSS. Additionally, hydrodynamic instability including convection flow determines the final structure of 2D LIPSS.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"7 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Two-dimensional laser-induced periodic surface structures formed on crystalline silicon by GHz burst mode femtosecond laser pulses\",\"authors\":\"Shota Kawabata, Shi Bai, K. Obata, G. Miyaji, K. Sugioka\",\"doi\":\"10.1088/2631-7990/acb133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that cannot be obtained by the conventional irradiation scheme of femtosecond laser pulses (single-pulse mode). However, most studies using the GHz burst mode femtosecond laser pulses focus on ablation of materials to achieve high-efficiency and high-quality material removal. In this study, we explore the ability of the GHz burst mode femtosecond laser processing to form laser-induced periodic surface structures (LIPSS) on silicon. It is well known that the direction of LIPSS formed by the single-pulse mode with linearly polarized laser pulses is typically perpendicular to the laser polarization direction. In contrast, we find that the GHz burst mode femtosecond laser (wavelength: 1030 nm, intra-pulse duration: 220 fs, intra-pulse interval time (intra-pulse repetition rate): 205 ps (4.88 GHz), burst pulse repetition rate: 200 kHz) creates unique two-dimensional (2D) LIPSS. We regard the formation mechanism of 2D LIPSS as the synergetic contribution of the electromagnetic mechanism and the hydrodynamic mechanism. Specifically, generation of hot spots with highly enhanced electric fields by the localized surface plasmon resonance of subsequent pulses in the bursts within the nanogrooves of one-dimensional LIPSS formed by the preceding pulses creates 2D LIPSS. Additionally, hydrodynamic instability including convection flow determines the final structure of 2D LIPSS.\",\"PeriodicalId\":52353,\"journal\":{\"name\":\"International Journal of Extreme Manufacturing\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2023-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Extreme Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-7990/acb133\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/acb133","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 8

摘要

GHz突发模式的飞秒激光脉冲由一系列脉冲间隔为几百皮秒的超短激光脉冲序列组成,在材料加工中具有传统飞秒激光脉冲(单脉冲模式)照射方案无法获得的独特特性。然而,大多数使用GHz突发模式飞秒激光脉冲的研究都集中在材料的烧蚀上,以实现高效率和高质量的材料去除。在这项研究中,我们探索了GHz突发模式飞秒激光处理在硅上形成激光诱导周期性表面结构(LIPSS)的能力。众所周知,单脉冲模式与线偏振激光脉冲形成的LIPSS方向通常垂直于激光偏振方向。相比之下,我们发现GHz突发模式飞秒激光器(波长:1030 nm,脉冲内持续时间:220 fs,脉冲内间隔时间(脉冲内重复率):205 ps (4.88 GHz),突发脉冲重复率:200 kHz)创建了独特的二维(2D) LIPSS。我们认为二维LIPSS的形成机制是电磁机制和水动力机制共同作用的结果。具体来说,在由前一个脉冲形成的一维LIPSS的纳米沟槽内,通过后续脉冲的局部表面等离子体共振产生具有高度增强电场的热点,产生二维LIPSS。此外,包括对流流在内的流体动力不稳定性决定了2D LIPSS的最终结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two-dimensional laser-induced periodic surface structures formed on crystalline silicon by GHz burst mode femtosecond laser pulses
Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that cannot be obtained by the conventional irradiation scheme of femtosecond laser pulses (single-pulse mode). However, most studies using the GHz burst mode femtosecond laser pulses focus on ablation of materials to achieve high-efficiency and high-quality material removal. In this study, we explore the ability of the GHz burst mode femtosecond laser processing to form laser-induced periodic surface structures (LIPSS) on silicon. It is well known that the direction of LIPSS formed by the single-pulse mode with linearly polarized laser pulses is typically perpendicular to the laser polarization direction. In contrast, we find that the GHz burst mode femtosecond laser (wavelength: 1030 nm, intra-pulse duration: 220 fs, intra-pulse interval time (intra-pulse repetition rate): 205 ps (4.88 GHz), burst pulse repetition rate: 200 kHz) creates unique two-dimensional (2D) LIPSS. We regard the formation mechanism of 2D LIPSS as the synergetic contribution of the electromagnetic mechanism and the hydrodynamic mechanism. Specifically, generation of hot spots with highly enhanced electric fields by the localized surface plasmon resonance of subsequent pulses in the bursts within the nanogrooves of one-dimensional LIPSS formed by the preceding pulses creates 2D LIPSS. Additionally, hydrodynamic instability including convection flow determines the final structure of 2D LIPSS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
期刊最新文献
Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration. Additively manufactured Ti-Ta-Cu alloys for the next-generation load-bearing implants. A novel approach of jet polishing for interior surface of small grooved components using three developed setups Elliptical vibration chiseling: a novel process for texturing ultra-high-aspect-ratio microstructures on the metallic surface Printability disparities in heterogeneous material combinations via laser directed energy deposition: a comparative study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1