面向耦合的局部聚类隐马尔可夫随机场模型用于肿瘤微环境图像血管分割和空间结构测量

Yanqiao Zhu, Fuhai Li, D. Cridebring, Jinwen Ma, Stephen T. C. Wong, T. Vadakkan, Mei Zhang, John D. Landua, Wei Wei, M. Dickinson, J. Rosen, M. Lewis
{"title":"面向耦合的局部聚类隐马尔可夫随机场模型用于肿瘤微环境图像血管分割和空间结构测量","authors":"Yanqiao Zhu, Fuhai Li, D. Cridebring, Jinwen Ma, Stephen T. C. Wong, T. Vadakkan, Mei Zhang, John D. Landua, Wei Wei, M. Dickinson, J. Rosen, M. Lewis","doi":"10.1109/BIBM.2011.104","DOIUrl":null,"url":null,"abstract":"Interactions between cancer cells and factors within the tumor microenvironment (mE) are essential for understanding tumor development. The spatial relationships between blood vessel cells and cancer cells, e.g. tumor initiating cells (TICs), are an important parameter. Accurate segmentation of blood vessel is necessary for the quantization of their spatial relationships. However, this remains an open problem due to uneven intensity and low signal to noise ratio (SNR). To overcome these challenges, we propose a novel approach that integrates an oriented hidden Markov random field model (Ori-HMRF) with local clustering. The local clustering delineates boundaries of blood vessel segments with low SNR. Then blood vessel segments are viewed as random variables in the Ori-HMRF and their spatial dependence is defined based on directional information. The Ori-HMRF model suppresses noise and generates accurate blood vessel segmentation results. Experimental validations were conducted on both normal mammary and breast cancer tissues.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"1 1","pages":"352-357"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Coupling Oriented Hidden Markov Random Field Model with Local Clustering for Segmenting Blood Vessels and Measuring Spatial Structures in Images of Tumor Microenvironment\",\"authors\":\"Yanqiao Zhu, Fuhai Li, D. Cridebring, Jinwen Ma, Stephen T. C. Wong, T. Vadakkan, Mei Zhang, John D. Landua, Wei Wei, M. Dickinson, J. Rosen, M. Lewis\",\"doi\":\"10.1109/BIBM.2011.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interactions between cancer cells and factors within the tumor microenvironment (mE) are essential for understanding tumor development. The spatial relationships between blood vessel cells and cancer cells, e.g. tumor initiating cells (TICs), are an important parameter. Accurate segmentation of blood vessel is necessary for the quantization of their spatial relationships. However, this remains an open problem due to uneven intensity and low signal to noise ratio (SNR). To overcome these challenges, we propose a novel approach that integrates an oriented hidden Markov random field model (Ori-HMRF) with local clustering. The local clustering delineates boundaries of blood vessel segments with low SNR. Then blood vessel segments are viewed as random variables in the Ori-HMRF and their spatial dependence is defined based on directional information. The Ori-HMRF model suppresses noise and generates accurate blood vessel segmentation results. Experimental validations were conducted on both normal mammary and breast cancer tissues.\",\"PeriodicalId\":6345,\"journal\":{\"name\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"volume\":\"1 1\",\"pages\":\"352-357\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2011.104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2011.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

癌细胞与肿瘤微环境(mE)内因子之间的相互作用对于理解肿瘤的发展至关重要。血管细胞和癌细胞(如肿瘤起始细胞)之间的空间关系是一个重要的参数。血管的精确分割是量化血管空间关系的必要条件。然而,由于强度不均和低信噪比(SNR),这仍然是一个悬而未决的问题。为了克服这些挑战,我们提出了一种将面向隐马尔可夫随机场模型(Ori-HMRF)与局部聚类相结合的新方法。局部聚类描述低信噪比的血管段边界。然后将血管段视为Ori-HMRF中的随机变量,并根据方向信息定义其空间依赖性。Ori-HMRF模型抑制了噪声,产生了准确的血管分割结果。在正常乳腺组织和乳腺癌组织中均进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coupling Oriented Hidden Markov Random Field Model with Local Clustering for Segmenting Blood Vessels and Measuring Spatial Structures in Images of Tumor Microenvironment
Interactions between cancer cells and factors within the tumor microenvironment (mE) are essential for understanding tumor development. The spatial relationships between blood vessel cells and cancer cells, e.g. tumor initiating cells (TICs), are an important parameter. Accurate segmentation of blood vessel is necessary for the quantization of their spatial relationships. However, this remains an open problem due to uneven intensity and low signal to noise ratio (SNR). To overcome these challenges, we propose a novel approach that integrates an oriented hidden Markov random field model (Ori-HMRF) with local clustering. The local clustering delineates boundaries of blood vessel segments with low SNR. Then blood vessel segments are viewed as random variables in the Ori-HMRF and their spatial dependence is defined based on directional information. The Ori-HMRF model suppresses noise and generates accurate blood vessel segmentation results. Experimental validations were conducted on both normal mammary and breast cancer tissues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of protein architectures inferred from phylogenomic analysis of CATH Hierarchical modeling of alternative exon usage associations with survival 3D point cloud sensors for low-cost medical in-situ visualization Bayesian Classifiers for Chemical Toxicity Prediction Normal mode analysis of protein structure dynamics based on residue contact energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1