{"title":"不同无线技术的室内定位比较分析","authors":"Amanpreet Singh, Matin Emam, Yaser Al Mtawa","doi":"10.3390/eng4030131","DOIUrl":null,"url":null,"abstract":"This article examines the comparative effectiveness of three indoor node localization techniques—Multilateration, the Weighted Centroid algorithm, and Grid-based Received Signal Strength (RSS)—in wireless networking applications. The comparison is based on their performance against localization accuracy using RSS Indicator (RSSI) data in three experiments. The experiments utilized internally generated or real-world datasets with RSSI values for the unknown tag nodes. The datasets were obtained from various sources and evaluated in different scenarios to determine the efficiency of the three localization techniques. The results were evaluated and compared using mean error and standard deviation metrics. The findings indicate that trilateration achieves superior localization accuracy and precision in a Bluetooth Low Energy (BLE) environment compared to Wi-Fi and ZigBee. The Centroid technique showed the highest resistance to noise and outliers but is positioned biased (unlike Trilateration). Besides that, the Grid-based RSS technique is highly sensitive to noise, and theoretical RSS. These findings can greatly assist researchers and network operators in carefully selecting the most suitable localization technique for their wireless networking applications, taking into account the specific wireless technology utilized and their unique needs and limitations.","PeriodicalId":10630,"journal":{"name":"Comput. Chem. Eng.","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Indoor Localization across Various Wireless Technologies\",\"authors\":\"Amanpreet Singh, Matin Emam, Yaser Al Mtawa\",\"doi\":\"10.3390/eng4030131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article examines the comparative effectiveness of three indoor node localization techniques—Multilateration, the Weighted Centroid algorithm, and Grid-based Received Signal Strength (RSS)—in wireless networking applications. The comparison is based on their performance against localization accuracy using RSS Indicator (RSSI) data in three experiments. The experiments utilized internally generated or real-world datasets with RSSI values for the unknown tag nodes. The datasets were obtained from various sources and evaluated in different scenarios to determine the efficiency of the three localization techniques. The results were evaluated and compared using mean error and standard deviation metrics. The findings indicate that trilateration achieves superior localization accuracy and precision in a Bluetooth Low Energy (BLE) environment compared to Wi-Fi and ZigBee. The Centroid technique showed the highest resistance to noise and outliers but is positioned biased (unlike Trilateration). Besides that, the Grid-based RSS technique is highly sensitive to noise, and theoretical RSS. These findings can greatly assist researchers and network operators in carefully selecting the most suitable localization technique for their wireless networking applications, taking into account the specific wireless technology utilized and their unique needs and limitations.\",\"PeriodicalId\":10630,\"journal\":{\"name\":\"Comput. Chem. Eng.\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Chem. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/eng4030131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Chem. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/eng4030131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Analysis of Indoor Localization across Various Wireless Technologies
This article examines the comparative effectiveness of three indoor node localization techniques—Multilateration, the Weighted Centroid algorithm, and Grid-based Received Signal Strength (RSS)—in wireless networking applications. The comparison is based on their performance against localization accuracy using RSS Indicator (RSSI) data in three experiments. The experiments utilized internally generated or real-world datasets with RSSI values for the unknown tag nodes. The datasets were obtained from various sources and evaluated in different scenarios to determine the efficiency of the three localization techniques. The results were evaluated and compared using mean error and standard deviation metrics. The findings indicate that trilateration achieves superior localization accuracy and precision in a Bluetooth Low Energy (BLE) environment compared to Wi-Fi and ZigBee. The Centroid technique showed the highest resistance to noise and outliers but is positioned biased (unlike Trilateration). Besides that, the Grid-based RSS technique is highly sensitive to noise, and theoretical RSS. These findings can greatly assist researchers and network operators in carefully selecting the most suitable localization technique for their wireless networking applications, taking into account the specific wireless technology utilized and their unique needs and limitations.