Shapley-Shubik功率指数的蒙特卡罗方法

Yuto Ushioda, Masato Tanaka, Tomomi Matsui
{"title":"Shapley-Shubik功率指数的蒙特卡罗方法","authors":"Yuto Ushioda, Masato Tanaka, Tomomi Matsui","doi":"10.3390/g13030044","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of calculating the Shapley–Shubik power index in weighted majority games. We propose an efficient Monte Carlo algorithm based on an implicit hierarchical structure of permutations of players. Our algorithm outputs a vector of power indices preserving the monotonicity, with respect to the voting weights. We show that our algorithm reduces the required number of samples, compared with the naive algorithm.","PeriodicalId":85522,"journal":{"name":"Simulation & games","volume":"57 1","pages":"44"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monte Carlo Methods for the Shapley-Shubik Power Index\",\"authors\":\"Yuto Ushioda, Masato Tanaka, Tomomi Matsui\",\"doi\":\"10.3390/g13030044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the problem of calculating the Shapley–Shubik power index in weighted majority games. We propose an efficient Monte Carlo algorithm based on an implicit hierarchical structure of permutations of players. Our algorithm outputs a vector of power indices preserving the monotonicity, with respect to the voting weights. We show that our algorithm reduces the required number of samples, compared with the naive algorithm.\",\"PeriodicalId\":85522,\"journal\":{\"name\":\"Simulation & games\",\"volume\":\"57 1\",\"pages\":\"44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation & games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/g13030044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation & games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/g13030044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了加权多数对策中Shapley-Shubik幂指数的计算问题。我们提出了一种基于玩家排列的隐式层次结构的高效蒙特卡罗算法。我们的算法输出一个幂指数向量,保持相对于投票权重的单调性。我们表明,与朴素算法相比,我们的算法减少了所需的样本数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monte Carlo Methods for the Shapley-Shubik Power Index
This paper deals with the problem of calculating the Shapley–Shubik power index in weighted majority games. We propose an efficient Monte Carlo algorithm based on an implicit hierarchical structure of permutations of players. Our algorithm outputs a vector of power indices preserving the monotonicity, with respect to the voting weights. We show that our algorithm reduces the required number of samples, compared with the naive algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The underlying structure of the Personality Inventory for DSM-5 (PID-5): a general factor of personality psychopathology. Monte Carlo Methods for the Shapley-Shubik Power Index Myocarditis Cases After mRNA-Based COVID-19 Vaccination in the US-Reply. Exits from the European Union and Their Effect on Power Distribution in the Council Implicit Versus Explicit Knowledge in Dialogical Logic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1