基于激光雷达位置识别的高效准确车辆定位

IF 2 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Information Technology and Control Pub Date : 2023-07-15 DOI:10.5755/j01.itc.52.2.32690
Qimin Xu, Zhao Xin, Liao Longjie, L. Yameng, Li Na
{"title":"基于激光雷达位置识别的高效准确车辆定位","authors":"Qimin Xu, Zhao Xin, Liao Longjie, L. Yameng, Li Na","doi":"10.5755/j01.itc.52.2.32690","DOIUrl":null,"url":null,"abstract":"An efficient and accurate LiDAR place recognition methodology is proposed for vehicle localization. First, the Iris-LOAM is proposed to overcome the disadvantages of low accuracy of loop-closure detection and low efficiency of map construction in the existing LOAM-series methods. The method integrates the LiDAR-Iris global descriptor and Normal Distribution Transform (NDT) registration method into the loop-closure detection module of LiDAR Odometry and Mapping (LOAM), thereby improving the accuracy and efficiency of map construction. For the shortcomings of low map loading and matching efficiency, the Random Sample Consensus method is used to remove the ground point cloud information. The Voxel Grid method is used to down sample the loaded map. Finally, the NDT method is adopted for point cloud map matching to obtain the position information. Show that the Iris-LOAM has higher efficiency than the SC-LeGO-LOAM. The average time of point cloud map matching is reduced by 39.5%. The place recognition can be executed to achieve accuracy vehicle localization.","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"16 1","pages":"562-575"},"PeriodicalIF":2.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and Accurate Vehicle Localization Based on LiDAR Place Recognition\",\"authors\":\"Qimin Xu, Zhao Xin, Liao Longjie, L. Yameng, Li Na\",\"doi\":\"10.5755/j01.itc.52.2.32690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient and accurate LiDAR place recognition methodology is proposed for vehicle localization. First, the Iris-LOAM is proposed to overcome the disadvantages of low accuracy of loop-closure detection and low efficiency of map construction in the existing LOAM-series methods. The method integrates the LiDAR-Iris global descriptor and Normal Distribution Transform (NDT) registration method into the loop-closure detection module of LiDAR Odometry and Mapping (LOAM), thereby improving the accuracy and efficiency of map construction. For the shortcomings of low map loading and matching efficiency, the Random Sample Consensus method is used to remove the ground point cloud information. The Voxel Grid method is used to down sample the loaded map. Finally, the NDT method is adopted for point cloud map matching to obtain the position information. Show that the Iris-LOAM has higher efficiency than the SC-LeGO-LOAM. The average time of point cloud map matching is reduced by 39.5%. The place recognition can be executed to achieve accuracy vehicle localization.\",\"PeriodicalId\":54982,\"journal\":{\"name\":\"Information Technology and Control\",\"volume\":\"16 1\",\"pages\":\"562-575\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Technology and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.itc.52.2.32690\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5755/j01.itc.52.2.32690","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种高效、准确的激光雷达位置识别方法用于车辆定位。首先,针对现有loam系列方法中闭环检测精度低、地图构建效率低等缺点,提出Iris-LOAM;该方法将LiDAR- iris全局描述子和正态分布变换(NDT)配准方法集成到LiDAR测图(LOAM)的闭环检测模块中,从而提高了地图构建的精度和效率。针对地图加载和匹配效率低的缺点,采用随机样本一致性方法去除地点云信息。使用体素网格方法对加载的地图进行下采样。最后,采用无损检测方法对点云图进行匹配,获取位置信息。表明Iris-LOAM比SC-LeGO-LOAM具有更高的效率。点云图匹配的平均时间缩短了39.5%。通过位置识别实现车辆的精确定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient and Accurate Vehicle Localization Based on LiDAR Place Recognition
An efficient and accurate LiDAR place recognition methodology is proposed for vehicle localization. First, the Iris-LOAM is proposed to overcome the disadvantages of low accuracy of loop-closure detection and low efficiency of map construction in the existing LOAM-series methods. The method integrates the LiDAR-Iris global descriptor and Normal Distribution Transform (NDT) registration method into the loop-closure detection module of LiDAR Odometry and Mapping (LOAM), thereby improving the accuracy and efficiency of map construction. For the shortcomings of low map loading and matching efficiency, the Random Sample Consensus method is used to remove the ground point cloud information. The Voxel Grid method is used to down sample the loaded map. Finally, the NDT method is adopted for point cloud map matching to obtain the position information. Show that the Iris-LOAM has higher efficiency than the SC-LeGO-LOAM. The average time of point cloud map matching is reduced by 39.5%. The place recognition can be executed to achieve accuracy vehicle localization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Technology and Control
Information Technology and Control 工程技术-计算机:人工智能
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
12 months
期刊介绍: Periodical journal covers a wide field of computer science and control systems related problems including: -Software and hardware engineering; -Management systems engineering; -Information systems and databases; -Embedded systems; -Physical systems modelling and application; -Computer networks and cloud computing; -Data visualization; -Human-computer interface; -Computer graphics, visual analytics, and multimedia systems.
期刊最新文献
Model construction of big data asset management system for digital power grid regulation Melanoma Diagnosis Using Enhanced Faster Region Convolutional Neural Networks Optimized by Artificial Gorilla Troops Algorithm A Scalable and Stacked Ensemble Approach to Improve Intrusion Detection in Clouds Traffic Sign Detection Algorithm Based on Improved Yolox Apply Physical System Model and Computer Algorithm to Identify Osmanthus Fragrans Seed Vigor Based on Hyperspectral Imaging and Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1