视觉推理验证码安全性研究

Yipeng Gao, Haichang Gao, Sainan Luo, Yang Zi, Shudong Zhang, Wenjie Mao, Ping Wang, Yulong Shen, Jeff Yan
{"title":"视觉推理验证码安全性研究","authors":"Yipeng Gao, Haichang Gao, Sainan Luo, Yang Zi, Shudong Zhang, Wenjie Mao, Ping Wang, Yulong Shen, Jeff Yan","doi":"10.1109/tdsc.2023.3238408","DOIUrl":null,"url":null,"abstract":"CAPTCHA is an effective mechanism for protecting computers from malicious bots. With the development of deep learning techniques, current mainstream text-based and traditional image-based CAPTCHAs have been proven to be insecure. Therefore, a major effort has been directed toward developing new CAPTCHAs by utilizing some other hard Artificial Intelligence (AI) problems. Recently, some commercial companies (Tencent, NetEase, Geetest, etc.) have begun deploying a new type of CAPTCHA based on visual reasoning to defend against bots. As a newly proposed CAPTCHA, it is therefore natural to ask a fundamental question: are visual reasoning CAPTCHAs as secure as their designers expect? This paper explores the security of visual reasoning CAPTCHAs. We proposed a modular attack and evaluated it on six different real-world visual reasoning CAPTCHAs, which achieved overall success rates ranging from 79.2% to 98.6%. The results show that visual reasoning CAPTCHAs are not as secure as anticipated; this latest effort to use novel, hard AI problems for CAPTCHAs has not yet succeeded. Then, we summarize some guidelines for designing better visual-based CAPTCHAs, and based on the lessons we learned from our attacks, we propose a new CAPTCHA based on commonsense knowledge (CsCAPTCHA) and show its security and usability experimentally.","PeriodicalId":91597,"journal":{"name":"Proceedings of the ... USENIX Security Symposium. UNIX Security Symposium","volume":"6 1","pages":"4976-4992"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Research on the Security of Visual Reasoning CAPTCHA\",\"authors\":\"Yipeng Gao, Haichang Gao, Sainan Luo, Yang Zi, Shudong Zhang, Wenjie Mao, Ping Wang, Yulong Shen, Jeff Yan\",\"doi\":\"10.1109/tdsc.2023.3238408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CAPTCHA is an effective mechanism for protecting computers from malicious bots. With the development of deep learning techniques, current mainstream text-based and traditional image-based CAPTCHAs have been proven to be insecure. Therefore, a major effort has been directed toward developing new CAPTCHAs by utilizing some other hard Artificial Intelligence (AI) problems. Recently, some commercial companies (Tencent, NetEase, Geetest, etc.) have begun deploying a new type of CAPTCHA based on visual reasoning to defend against bots. As a newly proposed CAPTCHA, it is therefore natural to ask a fundamental question: are visual reasoning CAPTCHAs as secure as their designers expect? This paper explores the security of visual reasoning CAPTCHAs. We proposed a modular attack and evaluated it on six different real-world visual reasoning CAPTCHAs, which achieved overall success rates ranging from 79.2% to 98.6%. The results show that visual reasoning CAPTCHAs are not as secure as anticipated; this latest effort to use novel, hard AI problems for CAPTCHAs has not yet succeeded. Then, we summarize some guidelines for designing better visual-based CAPTCHAs, and based on the lessons we learned from our attacks, we propose a new CAPTCHA based on commonsense knowledge (CsCAPTCHA) and show its security and usability experimentally.\",\"PeriodicalId\":91597,\"journal\":{\"name\":\"Proceedings of the ... USENIX Security Symposium. UNIX Security Symposium\",\"volume\":\"6 1\",\"pages\":\"4976-4992\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... USENIX Security Symposium. UNIX Security Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/tdsc.2023.3238408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... USENIX Security Symposium. UNIX Security Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/tdsc.2023.3238408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

验证码是保护计算机免受恶意机器人攻击的有效机制。随着深度学习技术的发展,目前主流的基于文本的验证码已被证明是不安全的。因此,主要的工作方向是开发基于图像的captcha,而基于图像的视觉推理正在成为这种发展的新方向。最近,腾讯部署了视觉图灵测试(VTT)验证码。这似乎是视觉推理方案的首次应用。随后,其他CAPTCHA服务商(Geetest,网易,钉向等)也提出了自己的视觉推理方案来防御机器人。因此,很自然地要问一个基本问题:视觉推理验证码是否像其设计者所期望的那样安全?本文提出了解决视觉推理验证码的第一次尝试。我们实施了整体攻击和模块化攻击,对VTT CAPTCHA的总体成功率分别为67.3%和88.0%。结果表明,视觉推理验证码并不像预期的那样安全;这一最新的尝试是在验证码中使用新颖、困难的人工智能问题,但尚未成功。根据我们从攻击中吸取的教训,我们还提供了一些设计具有更好安全性的视觉captcha的指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on the Security of Visual Reasoning CAPTCHA
CAPTCHA is an effective mechanism for protecting computers from malicious bots. With the development of deep learning techniques, current mainstream text-based and traditional image-based CAPTCHAs have been proven to be insecure. Therefore, a major effort has been directed toward developing new CAPTCHAs by utilizing some other hard Artificial Intelligence (AI) problems. Recently, some commercial companies (Tencent, NetEase, Geetest, etc.) have begun deploying a new type of CAPTCHA based on visual reasoning to defend against bots. As a newly proposed CAPTCHA, it is therefore natural to ask a fundamental question: are visual reasoning CAPTCHAs as secure as their designers expect? This paper explores the security of visual reasoning CAPTCHAs. We proposed a modular attack and evaluated it on six different real-world visual reasoning CAPTCHAs, which achieved overall success rates ranging from 79.2% to 98.6%. The results show that visual reasoning CAPTCHAs are not as secure as anticipated; this latest effort to use novel, hard AI problems for CAPTCHAs has not yet succeeded. Then, we summarize some guidelines for designing better visual-based CAPTCHAs, and based on the lessons we learned from our attacks, we propose a new CAPTCHA based on commonsense knowledge (CsCAPTCHA) and show its security and usability experimentally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Security of Visual Reasoning CAPTCHA A Highly Accurate Query-Recovery Attack against Searchable Encryption using Non-Indexed Documents Hot Pixels: Frequency, Power, and Temperature Attacks on GPUs and ARM SoCs PTW: Pivotal Tuning Watermarking for Pre-Trained Image Generators Inductive Graph Unlearning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1