考虑到可逆磁化的改进型普雷萨赫分布函数识别方法

Long Chen;Lvsheng Cui;Tong Ben;Libing Jing
{"title":"考虑到可逆磁化的改进型普雷萨赫分布函数识别方法","authors":"Long Chen;Lvsheng Cui;Tong Ben;Libing Jing","doi":"10.30941/CESTEMS.2023.00038","DOIUrl":null,"url":null,"abstract":"This paper presents an identification method of the scalar Preisach model to consider the effect of reversible magnetization in the process of distribution function identification. By reconsidering the identification process by stripping the influence of reversible components from the measurement data, the Preisach distribution function is identified by the pure irreversible components. In this way, the simulation accuracy of both limiting hysteresis loops and the inner internal symmetrical small hysteresis loop is ensured. Furthermore, through a discrete Preisach plane with a hybrid discretization method, the irreversible magnetic flux density components are computed more efficiently through the improved Preisach model. Finally, the proposed method results are compared with the traditional method and the traditional method considering reversible magnetization and validated by the laboratory test for the B30P105 electrical steel by Epstein frame.","PeriodicalId":100229,"journal":{"name":"CES Transactions on Electrical Machines and Systems","volume":"7 4","pages":"351-357"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10181102","citationCount":"0","resultStr":"{\"title\":\"An Improved Preisach Distribution Function Identification Method Considering the Reversible Magnetization\",\"authors\":\"Long Chen;Lvsheng Cui;Tong Ben;Libing Jing\",\"doi\":\"10.30941/CESTEMS.2023.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an identification method of the scalar Preisach model to consider the effect of reversible magnetization in the process of distribution function identification. By reconsidering the identification process by stripping the influence of reversible components from the measurement data, the Preisach distribution function is identified by the pure irreversible components. In this way, the simulation accuracy of both limiting hysteresis loops and the inner internal symmetrical small hysteresis loop is ensured. Furthermore, through a discrete Preisach plane with a hybrid discretization method, the irreversible magnetic flux density components are computed more efficiently through the improved Preisach model. Finally, the proposed method results are compared with the traditional method and the traditional method considering reversible magnetization and validated by the laboratory test for the B30P105 electrical steel by Epstein frame.\",\"PeriodicalId\":100229,\"journal\":{\"name\":\"CES Transactions on Electrical Machines and Systems\",\"volume\":\"7 4\",\"pages\":\"351-357\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10181102\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CES Transactions on Electrical Machines and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10181102/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CES Transactions on Electrical Machines and Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10181102/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种标量 Preisach 模型的识别方法,以考虑分布函数识别过程中可逆磁化的影响。通过从测量数据中剔除可逆成分的影响来重新考虑识别过程,用纯不可逆成分来识别普雷萨赫分布函数。这样,极限磁滞环和内部对称小磁滞环的模拟精度都得到了保证。此外,通过采用混合离散法的离散普雷萨赫平面,改进后的普雷萨赫模型可以更高效地计算不可逆磁通密度分量。最后,将提出的方法结果与传统方法和考虑到可逆磁化的传统方法进行了比较,并通过爱泼斯坦框架对 B30P105 电工钢的实验室测试进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Improved Preisach Distribution Function Identification Method Considering the Reversible Magnetization
This paper presents an identification method of the scalar Preisach model to consider the effect of reversible magnetization in the process of distribution function identification. By reconsidering the identification process by stripping the influence of reversible components from the measurement data, the Preisach distribution function is identified by the pure irreversible components. In this way, the simulation accuracy of both limiting hysteresis loops and the inner internal symmetrical small hysteresis loop is ensured. Furthermore, through a discrete Preisach plane with a hybrid discretization method, the irreversible magnetic flux density components are computed more efficiently through the improved Preisach model. Finally, the proposed method results are compared with the traditional method and the traditional method considering reversible magnetization and validated by the laboratory test for the B30P105 electrical steel by Epstein frame.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review of Field Weakening Control Strategies of Permanent Magnet Synchronous Motors Content Performance and Safety Improvement of Induction Motors Based on Testing and Evaluation Standards Review of Thermal Design of SiC Power Module for Motor Drive in Electrical Vehicle Application Model-Free Speed Control of Single-Phase Flux Switching Motor with an Asymmetrical Rotor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1