Gordon- Ng制冷机模型的辨识:线性还是非线性最小二乘?

F. Acerbi, G. Nicolao
{"title":"Gordon- Ng制冷机模型的辨识:线性还是非线性最小二乘?","authors":"F. Acerbi, G. Nicolao","doi":"10.1109/ETFA.2018.8502640","DOIUrl":null,"url":null,"abstract":"In this paper, the calibration of the parameters of the Gordon-Ng Universal (GNU) chiller model is investigated. In its standard formulation, the GNU model is written as a linear-in-parameter model that can be calibrated by Ordinary Least Squares. It has been already observed elsewhere that, since the regressors are subject to measurement inaccuracies, the OLS approach is prone to yield biased estimates of the parameters. As a remedy, Andersen and Reddy proposed the adoption of an Errors in Variable (EIV) framework, showing that bias could be reduced or even eliminated by means of a corrected least squares algorithm. However, some questions remained open. Given that the EIV approach achieves bias reduction at the cost of increasing the variance, is it really preferable to OLS? If the final goal is not parameter estimation, but the prediction of the Coefficient of Performance (COP), how does OLS compare with EIV? And what is the most appropriate calibration method, under a statistical viewpoint? Finally, is the added complexity of a statistically rigorous approach employing Nonlinear Least Squares (NLS) really worth the potential improvements in COP prediction? In order to answer these questions, three estimation methods, OLS, EIV and NLS, are tested on two benchmarks: a public precise chiller performance dataset and an ASHRAE dataset. The results suggest, that OLS estimation, in spite of its suboptimality, may prove largely satisfactory both for parameter estimation and COP prediction, although it may be worth analyzing other more challenging COP prediction problem before the final word is said.","PeriodicalId":6566,"journal":{"name":"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"11 1","pages":"1314-1321"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identification of the Gordon- Ng Chiller Model: Linear or Nonlinear Least Squares?\",\"authors\":\"F. Acerbi, G. Nicolao\",\"doi\":\"10.1109/ETFA.2018.8502640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the calibration of the parameters of the Gordon-Ng Universal (GNU) chiller model is investigated. In its standard formulation, the GNU model is written as a linear-in-parameter model that can be calibrated by Ordinary Least Squares. It has been already observed elsewhere that, since the regressors are subject to measurement inaccuracies, the OLS approach is prone to yield biased estimates of the parameters. As a remedy, Andersen and Reddy proposed the adoption of an Errors in Variable (EIV) framework, showing that bias could be reduced or even eliminated by means of a corrected least squares algorithm. However, some questions remained open. Given that the EIV approach achieves bias reduction at the cost of increasing the variance, is it really preferable to OLS? If the final goal is not parameter estimation, but the prediction of the Coefficient of Performance (COP), how does OLS compare with EIV? And what is the most appropriate calibration method, under a statistical viewpoint? Finally, is the added complexity of a statistically rigorous approach employing Nonlinear Least Squares (NLS) really worth the potential improvements in COP prediction? In order to answer these questions, three estimation methods, OLS, EIV and NLS, are tested on two benchmarks: a public precise chiller performance dataset and an ASHRAE dataset. The results suggest, that OLS estimation, in spite of its suboptimality, may prove largely satisfactory both for parameter estimation and COP prediction, although it may be worth analyzing other more challenging COP prediction problem before the final word is said.\",\"PeriodicalId\":6566,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":\"11 1\",\"pages\":\"1314-1321\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2018.8502640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2018.8502640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了Gordon-Ng通用型(GNU)制冷机模型参数的标定问题。在其标准公式中,GNU模型被写成一个参数线性模型,可以通过普通最小二乘进行校准。在其他地方已经观察到,由于回归量受到测量不准确性的影响,OLS方法容易产生有偏差的参数估计。作为补救措施,Andersen和Reddy提出采用变量误差(Errors in Variable, EIV)框架,表明通过修正的最小二乘算法可以减少甚至消除偏差。然而,一些问题仍然悬而未决。考虑到EIV方法以增加方差为代价实现了偏差减少,它真的比OLS更好吗?如果最终目标不是参数估计,而是性能系数(COP)的预测,OLS与EIV相比如何?从统计学的角度来看,什么是最合适的校准方法?最后,采用非线性最小二乘(NLS)的统计严谨方法所增加的复杂性是否真的值得COP预测的潜在改进?为了回答这些问题,三种估计方法,OLS, EIV和NLS,在两个基准上进行了测试:公共精确冷水机组性能数据集和ASHRAE数据集。结果表明,尽管OLS估计具有次优性,但在参数估计和COP预测方面可能在很大程度上令人满意,尽管在最后说之前可能值得分析其他更具挑战性的COP预测问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of the Gordon- Ng Chiller Model: Linear or Nonlinear Least Squares?
In this paper, the calibration of the parameters of the Gordon-Ng Universal (GNU) chiller model is investigated. In its standard formulation, the GNU model is written as a linear-in-parameter model that can be calibrated by Ordinary Least Squares. It has been already observed elsewhere that, since the regressors are subject to measurement inaccuracies, the OLS approach is prone to yield biased estimates of the parameters. As a remedy, Andersen and Reddy proposed the adoption of an Errors in Variable (EIV) framework, showing that bias could be reduced or even eliminated by means of a corrected least squares algorithm. However, some questions remained open. Given that the EIV approach achieves bias reduction at the cost of increasing the variance, is it really preferable to OLS? If the final goal is not parameter estimation, but the prediction of the Coefficient of Performance (COP), how does OLS compare with EIV? And what is the most appropriate calibration method, under a statistical viewpoint? Finally, is the added complexity of a statistically rigorous approach employing Nonlinear Least Squares (NLS) really worth the potential improvements in COP prediction? In order to answer these questions, three estimation methods, OLS, EIV and NLS, are tested on two benchmarks: a public precise chiller performance dataset and an ASHRAE dataset. The results suggest, that OLS estimation, in spite of its suboptimality, may prove largely satisfactory both for parameter estimation and COP prediction, although it may be worth analyzing other more challenging COP prediction problem before the final word is said.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scheduling and Situation-Adaptive Operation for Energy Efficiency of Hot Press Forging Factory Application of the Internet of Things (IoT) Technology in Consumer Electronics - Case Study Moving Average control chart for the detection and isolation of temporal faults in stochastic Petri nets A Prototype Implementation of Wi-Fi Seamless Redundancy with Reactive Duplication Avoidance Continuous Maintenance System for Optimal Scheduling Based on Real-Time Machine Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1