William-Armando Fernández-Vera, R. Corzo, N. Saavedra
{"title":"通过有效渗透压评价选择哥伦比亚山麓石炭系页岩OBM盐度","authors":"William-Armando Fernández-Vera, R. Corzo, N. Saavedra","doi":"10.29047/01225383.436","DOIUrl":null,"url":null,"abstract":"Wellbore instability in shales is attributed to many factors. Two of them are mechanical effects and physico-chemical effects. Drilling and drilling fluid cause physico-chemical interaction and the flux of water and ions that may alter the shale stress state through pore pressure and shale strength. This paper presents the analysis of the chemical osmosis phenomenon between drilling fluids and shale formations to evaluate the chemical parameters necessary for modeling the aqueous flux. These parameters are the drilling fluid activity (Adf), shale activity (Ash) and membrane efficiency (ME). This work also characterizes the shales for drilling purposes and describes an integrated methodology to obtain the magnitude of the chemical parameters. Furthermore, it is stated how the generation of effective osmotic pressure between the formation and drilling fluid define the water flux direction. Finally, the application of the results of the chemical analysis to Carbonera shale is presented. The design of laboratory tests for two mud formulations, Mud A and Mud B, and the field application is also showed. The Mud A is a balanced activity mud and the Mud B is a high salt concentration mud which may produce water flux out of the shale formation (dehydration) during drilling, in some sections of the wellbore, increasing the formation strength. The results presented in this paper will help to reduce the risks associated with wellbore instability during the drilling of shale formations and thereby lowering the overall non-productive time and reducing drilling costs.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"89 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2010-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selection of OBM salinity through effective osmotic pressure evaluation in carbonera shale for colombian foothills\",\"authors\":\"William-Armando Fernández-Vera, R. Corzo, N. Saavedra\",\"doi\":\"10.29047/01225383.436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wellbore instability in shales is attributed to many factors. Two of them are mechanical effects and physico-chemical effects. Drilling and drilling fluid cause physico-chemical interaction and the flux of water and ions that may alter the shale stress state through pore pressure and shale strength. This paper presents the analysis of the chemical osmosis phenomenon between drilling fluids and shale formations to evaluate the chemical parameters necessary for modeling the aqueous flux. These parameters are the drilling fluid activity (Adf), shale activity (Ash) and membrane efficiency (ME). This work also characterizes the shales for drilling purposes and describes an integrated methodology to obtain the magnitude of the chemical parameters. Furthermore, it is stated how the generation of effective osmotic pressure between the formation and drilling fluid define the water flux direction. Finally, the application of the results of the chemical analysis to Carbonera shale is presented. The design of laboratory tests for two mud formulations, Mud A and Mud B, and the field application is also showed. The Mud A is a balanced activity mud and the Mud B is a high salt concentration mud which may produce water flux out of the shale formation (dehydration) during drilling, in some sections of the wellbore, increasing the formation strength. The results presented in this paper will help to reduce the risks associated with wellbore instability during the drilling of shale formations and thereby lowering the overall non-productive time and reducing drilling costs.\",\"PeriodicalId\":55200,\"journal\":{\"name\":\"Ct&f-Ciencia Tecnologia Y Futuro\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2010-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ct&f-Ciencia Tecnologia Y Futuro\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.29047/01225383.436\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ct&f-Ciencia Tecnologia Y Futuro","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.29047/01225383.436","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Selection of OBM salinity through effective osmotic pressure evaluation in carbonera shale for colombian foothills
Wellbore instability in shales is attributed to many factors. Two of them are mechanical effects and physico-chemical effects. Drilling and drilling fluid cause physico-chemical interaction and the flux of water and ions that may alter the shale stress state through pore pressure and shale strength. This paper presents the analysis of the chemical osmosis phenomenon between drilling fluids and shale formations to evaluate the chemical parameters necessary for modeling the aqueous flux. These parameters are the drilling fluid activity (Adf), shale activity (Ash) and membrane efficiency (ME). This work also characterizes the shales for drilling purposes and describes an integrated methodology to obtain the magnitude of the chemical parameters. Furthermore, it is stated how the generation of effective osmotic pressure between the formation and drilling fluid define the water flux direction. Finally, the application of the results of the chemical analysis to Carbonera shale is presented. The design of laboratory tests for two mud formulations, Mud A and Mud B, and the field application is also showed. The Mud A is a balanced activity mud and the Mud B is a high salt concentration mud which may produce water flux out of the shale formation (dehydration) during drilling, in some sections of the wellbore, increasing the formation strength. The results presented in this paper will help to reduce the risks associated with wellbore instability during the drilling of shale formations and thereby lowering the overall non-productive time and reducing drilling costs.
期刊介绍:
The objective of CT&F is to publish the achievements of scientific research and technological developments of Ecopetrol S.A. and the research of other institutions in the field of oil, gas and alternative energy sources.
CT&F welcomes original, novel and high-impact contributions from all the fields in the oil and gas industry like: Acquisition and Exploration technologies, Basins characterization and modeling, Petroleum geology, Reservoir modeling, Enhanced Oil Recovery Technologies, Unconventional resources, Petroleum refining, Petrochemistry, Upgrading technologies, Technologies for fuels quality, Process modeling, and optimization, Supply chain optimization, Biofuels, Renewable energies.