Swapnil Mishra, James A. Scott, Daniel J. Laydon, Harrison Zhu, Neil M. Ferguson, Samir Bhatt, Seth Flaxman, Axel Gandy
{"title":"英国地方当局COVID-19模式","authors":"Swapnil Mishra, James A. Scott, Daniel J. Laydon, Harrison Zhu, Neil M. Ferguson, Samir Bhatt, Seth Flaxman, Axel Gandy","doi":"10.1111/rssa.12988","DOIUrl":null,"url":null,"abstract":"<p>We propose a new framework to model the COVID-19 epidemic of the United Kingdom at the local authority level. The model fits within a general framework for semi-mechanistic Bayesian models of the epidemic based on renewal equations, with some important innovations, including a random walk modelling the reproduction number, incorporating information from different sources, including surveys to estimate the time-varying proportion of infections that lead to reported cases or deaths, and modelling the underlying infections as latent random variables. The model is designed to be updated daily using publicly available data. We envisage the model to be useful for now-casting and short-term projections of the epidemic as well as estimating historical trends. The model fits are available on a public website: \nhttps://imperialcollegelondon.github.io/covid19local. The model is currently being used by the Scottish government to inform their interventions.</p>","PeriodicalId":49983,"journal":{"name":"Journal of the Royal Statistical Society Series A-Statistics in Society","volume":"185 S1","pages":"S86-S95"},"PeriodicalIF":1.5000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/rssa.12988","citationCount":"22","resultStr":"{\"title\":\"A COVID-19 model for local authorities of the United Kingdom\",\"authors\":\"Swapnil Mishra, James A. Scott, Daniel J. Laydon, Harrison Zhu, Neil M. Ferguson, Samir Bhatt, Seth Flaxman, Axel Gandy\",\"doi\":\"10.1111/rssa.12988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a new framework to model the COVID-19 epidemic of the United Kingdom at the local authority level. The model fits within a general framework for semi-mechanistic Bayesian models of the epidemic based on renewal equations, with some important innovations, including a random walk modelling the reproduction number, incorporating information from different sources, including surveys to estimate the time-varying proportion of infections that lead to reported cases or deaths, and modelling the underlying infections as latent random variables. The model is designed to be updated daily using publicly available data. We envisage the model to be useful for now-casting and short-term projections of the epidemic as well as estimating historical trends. The model fits are available on a public website: \\nhttps://imperialcollegelondon.github.io/covid19local. The model is currently being used by the Scottish government to inform their interventions.</p>\",\"PeriodicalId\":49983,\"journal\":{\"name\":\"Journal of the Royal Statistical Society Series A-Statistics in Society\",\"volume\":\"185 S1\",\"pages\":\"S86-S95\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/rssa.12988\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society Series A-Statistics in Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/rssa.12988\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series A-Statistics in Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/rssa.12988","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
A COVID-19 model for local authorities of the United Kingdom
We propose a new framework to model the COVID-19 epidemic of the United Kingdom at the local authority level. The model fits within a general framework for semi-mechanistic Bayesian models of the epidemic based on renewal equations, with some important innovations, including a random walk modelling the reproduction number, incorporating information from different sources, including surveys to estimate the time-varying proportion of infections that lead to reported cases or deaths, and modelling the underlying infections as latent random variables. The model is designed to be updated daily using publicly available data. We envisage the model to be useful for now-casting and short-term projections of the epidemic as well as estimating historical trends. The model fits are available on a public website:
https://imperialcollegelondon.github.io/covid19local. The model is currently being used by the Scottish government to inform their interventions.
期刊介绍:
Series A (Statistics in Society) publishes high quality papers that demonstrate how statistical thinking, design and analyses play a vital role in all walks of life and benefit society in general. There is no restriction on subject-matter: any interesting, topical and revelatory applications of statistics are welcome. For example, important applications of statistical and related data science methodology in medicine, business and commerce, industry, economics and finance, education and teaching, physical and biomedical sciences, the environment, the law, government and politics, demography, psychology, sociology and sport all fall within the journal''s remit. The journal is therefore aimed at a wide statistical audience and at professional statisticians in particular. Its emphasis is on well-written and clearly reasoned quantitative approaches to problems in the real world rather than the exposition of technical detail. Thus, although the methodological basis of papers must be sound and adequately explained, methodology per se should not be the main focus of a Series A paper. Of particular interest are papers on topical or contentious statistical issues, papers which give reviews or exposés of current statistical concerns and papers which demonstrate how appropriate statistical thinking has contributed to our understanding of important substantive questions. Historical, professional and biographical contributions are also welcome, as are discussions of methods of data collection and of ethical issues, provided that all such papers have substantial statistical relevance.