{"title":"多重应力蠕变恢复(MSCR)试验测定废机油改性沥青粘结剂作为路面材料","authors":"Biruk Tadele, Emer Tucay Quezon","doi":"10.54392/irjmt2212","DOIUrl":null,"url":null,"abstract":"Engineers have been using modified binders to improve the quality of flexible pavements. The use of waste material is one of the solutions taken in this direction. It is for this ground that the studies emphasis on the evaluation of waste engine oil as a modifier for asphalt binder as a pavement material. In the study uses four samples extracted from 80/100 penetration grade bitumen. From four sample first sample was checked for weather requirements of asphalt binder meet or not and the three were modified with different content of engine oil (3,6 and 9%). The behaviors of both unmodified and modified binder were checked for rheological properties. Dynamic shear rheometer (DSR) was used to determine high temperature performance grade (PG) and multiple stress creep recovery tests to determine rutting resistance properties of the binder. PG analysis indicates that both aged and un-aged 3% and 6% modified binder have similar higher PG grade with the unmodified one and 9% modified to have lower PG vale. Jnr3.2 value of modified asphalt binder is lower than unmodified binder indicating that modification had improved the rutting resistance and design traffic load (ESALS). The study shows that it is possible to use waste engine oil-modified binder as a pavement material.","PeriodicalId":14412,"journal":{"name":"International Research Journal of Multidisciplinary Technovation","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple Stress Creep Recovery (MSCR) Test for Determination of Waste Engine Oil Modified Asphalt Binder as Pavement Material\",\"authors\":\"Biruk Tadele, Emer Tucay Quezon\",\"doi\":\"10.54392/irjmt2212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engineers have been using modified binders to improve the quality of flexible pavements. The use of waste material is one of the solutions taken in this direction. It is for this ground that the studies emphasis on the evaluation of waste engine oil as a modifier for asphalt binder as a pavement material. In the study uses four samples extracted from 80/100 penetration grade bitumen. From four sample first sample was checked for weather requirements of asphalt binder meet or not and the three were modified with different content of engine oil (3,6 and 9%). The behaviors of both unmodified and modified binder were checked for rheological properties. Dynamic shear rheometer (DSR) was used to determine high temperature performance grade (PG) and multiple stress creep recovery tests to determine rutting resistance properties of the binder. PG analysis indicates that both aged and un-aged 3% and 6% modified binder have similar higher PG grade with the unmodified one and 9% modified to have lower PG vale. Jnr3.2 value of modified asphalt binder is lower than unmodified binder indicating that modification had improved the rutting resistance and design traffic load (ESALS). The study shows that it is possible to use waste engine oil-modified binder as a pavement material.\",\"PeriodicalId\":14412,\"journal\":{\"name\":\"International Research Journal of Multidisciplinary Technovation\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Research Journal of Multidisciplinary Technovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54392/irjmt2212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal of Multidisciplinary Technovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54392/irjmt2212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiple Stress Creep Recovery (MSCR) Test for Determination of Waste Engine Oil Modified Asphalt Binder as Pavement Material
Engineers have been using modified binders to improve the quality of flexible pavements. The use of waste material is one of the solutions taken in this direction. It is for this ground that the studies emphasis on the evaluation of waste engine oil as a modifier for asphalt binder as a pavement material. In the study uses four samples extracted from 80/100 penetration grade bitumen. From four sample first sample was checked for weather requirements of asphalt binder meet or not and the three were modified with different content of engine oil (3,6 and 9%). The behaviors of both unmodified and modified binder were checked for rheological properties. Dynamic shear rheometer (DSR) was used to determine high temperature performance grade (PG) and multiple stress creep recovery tests to determine rutting resistance properties of the binder. PG analysis indicates that both aged and un-aged 3% and 6% modified binder have similar higher PG grade with the unmodified one and 9% modified to have lower PG vale. Jnr3.2 value of modified asphalt binder is lower than unmodified binder indicating that modification had improved the rutting resistance and design traffic load (ESALS). The study shows that it is possible to use waste engine oil-modified binder as a pavement material.