学习高保真的面部纹理完成没有完整的面部纹理

Jongyoo Kim, Jiaolong Yang, Xin Tong
{"title":"学习高保真的面部纹理完成没有完整的面部纹理","authors":"Jongyoo Kim, Jiaolong Yang, Xin Tong","doi":"10.1109/ICCV48922.2021.01373","DOIUrl":null,"url":null,"abstract":"For face texture completion, previous methods typically use some complete textures captured by multiview imaging systems or 3D scanners for supervised learning. This paper deals with a new challenging problem - learning to complete invisible texture in a single face image without using any complete texture. We simply leverage a large corpus of face images of different subjects (e. g., FFHQ) to train a texture completion model in an unsupervised manner. To achieve this, we propose DSD-GAN, a novel deep neural network based method that applies two discriminators in UV map space and image space. These two discriminators work in a complementary manner to learn both facial structures and texture details. We show that their combination is essential to obtain high-fidelity results. Despite the network never sees any complete facial appearance, it is able to generate compelling full textures from single images.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"8 1","pages":"13970-13979"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Learning High-Fidelity Face Texture Completion without Complete Face Texture\",\"authors\":\"Jongyoo Kim, Jiaolong Yang, Xin Tong\",\"doi\":\"10.1109/ICCV48922.2021.01373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For face texture completion, previous methods typically use some complete textures captured by multiview imaging systems or 3D scanners for supervised learning. This paper deals with a new challenging problem - learning to complete invisible texture in a single face image without using any complete texture. We simply leverage a large corpus of face images of different subjects (e. g., FFHQ) to train a texture completion model in an unsupervised manner. To achieve this, we propose DSD-GAN, a novel deep neural network based method that applies two discriminators in UV map space and image space. These two discriminators work in a complementary manner to learn both facial structures and texture details. We show that their combination is essential to obtain high-fidelity results. Despite the network never sees any complete facial appearance, it is able to generate compelling full textures from single images.\",\"PeriodicalId\":6820,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"8 1\",\"pages\":\"13970-13979\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV48922.2021.01373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.01373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

对于面部纹理补全,以前的方法通常使用多视图成像系统或3D扫描仪捕获的一些完整纹理进行监督学习。本文研究了一个新的具有挑战性的问题——在不使用任何完整纹理的情况下,学习在单张人脸图像中完成不可见纹理。我们简单地利用不同主题的大量面部图像(例如,FFHQ)以无监督的方式训练纹理完成模型。为了实现这一目标,我们提出了一种新的基于深度神经网络的DSD-GAN方法,该方法在UV地图空间和图像空间中应用两个鉴别器。这两种鉴别器以互补的方式学习面部结构和纹理细节。我们表明,它们的组合对于获得高保真度的结果至关重要。尽管该网络从未看到任何完整的面部外观,但它能够从单个图像中生成引人注目的完整纹理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning High-Fidelity Face Texture Completion without Complete Face Texture
For face texture completion, previous methods typically use some complete textures captured by multiview imaging systems or 3D scanners for supervised learning. This paper deals with a new challenging problem - learning to complete invisible texture in a single face image without using any complete texture. We simply leverage a large corpus of face images of different subjects (e. g., FFHQ) to train a texture completion model in an unsupervised manner. To achieve this, we propose DSD-GAN, a novel deep neural network based method that applies two discriminators in UV map space and image space. These two discriminators work in a complementary manner to learn both facial structures and texture details. We show that their combination is essential to obtain high-fidelity results. Despite the network never sees any complete facial appearance, it is able to generate compelling full textures from single images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Naturalistic Physical Adversarial Patch for Object Detectors Polarimetric Helmholtz Stereopsis Deep Transport Network for Unsupervised Video Object Segmentation Real-time Vanishing Point Detector Integrating Under-parameterized RANSAC and Hough Transform Adaptive Label Noise Cleaning with Meta-Supervision for Deep Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1