{"title":"拉马努金猜想及其应用","authors":"Wen-Ching Winnie Li","doi":"10.1098/rsta.2018.0441","DOIUrl":null,"url":null,"abstract":"In this paper, we review the Ramanujan conjecture in classical and modern settings and explain its various applications in computer science, including the explicit constructions of the spectrally extremal combinatorial objects, called Ramanujan graphs and Ramanujan complexes, points uniformly distributed on spheres, and Golden-Gate Sets in quantum computing. The connection between Ramanujan graphs/complexes and their zeta functions satisfying the Riemann hypothesis is also discussed. This article is part of a discussion meeting issue ‘Srinivasa Ramanujan: in celebration of the centenary of his election as FRS’.","PeriodicalId":20020,"journal":{"name":"Philosophical Transactions of the Royal Society A","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The Ramanujan conjecture and its applications\",\"authors\":\"Wen-Ching Winnie Li\",\"doi\":\"10.1098/rsta.2018.0441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we review the Ramanujan conjecture in classical and modern settings and explain its various applications in computer science, including the explicit constructions of the spectrally extremal combinatorial objects, called Ramanujan graphs and Ramanujan complexes, points uniformly distributed on spheres, and Golden-Gate Sets in quantum computing. The connection between Ramanujan graphs/complexes and their zeta functions satisfying the Riemann hypothesis is also discussed. This article is part of a discussion meeting issue ‘Srinivasa Ramanujan: in celebration of the centenary of his election as FRS’.\",\"PeriodicalId\":20020,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2018.0441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rsta.2018.0441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we review the Ramanujan conjecture in classical and modern settings and explain its various applications in computer science, including the explicit constructions of the spectrally extremal combinatorial objects, called Ramanujan graphs and Ramanujan complexes, points uniformly distributed on spheres, and Golden-Gate Sets in quantum computing. The connection between Ramanujan graphs/complexes and their zeta functions satisfying the Riemann hypothesis is also discussed. This article is part of a discussion meeting issue ‘Srinivasa Ramanujan: in celebration of the centenary of his election as FRS’.