基于蛋白质子网络分形维数的蛋白质-蛋白质相互作用网络聚类

V. Deepthi, G. Gopakumar
{"title":"基于蛋白质子网络分形维数的蛋白质-蛋白质相互作用网络聚类","authors":"V. Deepthi, G. Gopakumar","doi":"10.1109/TENCON.2015.7372789","DOIUrl":null,"url":null,"abstract":"Protein-protein interactions play a vital role in the biological processes of all living organisms. These interactions can be represented as networks, in which a node represents a protein and an edge represents an interaction between a pair of proteins. Clustering of these networks leads to the detection of significant protein complexes. FDPClus, a density based clustering method of these networks using the principles of fractal dimension is proposed here. A modified sand box algorithm is used to find the fractal dimension of protein subnetworks. The F-measure values obtained for the Gavin and Collins data set are 0.48 and 0.63 respectively when compared against the CYC2008 yeast benchmark protein complex set. The proposed method shows better performance than other existing methods such as DPClus, MCODE, RNSC, CORE and MCL. Hence it demonstrates the usefulness of fractal dimension of protein subnetworks in the clustering of Protein-Protein Interaction (PPI) networks.","PeriodicalId":22200,"journal":{"name":"TENCON 2015 - 2015 IEEE Region 10 Conference","volume":"142 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Clustering of protein-protein interaction network using fractal dimension of protein subnetworks\",\"authors\":\"V. Deepthi, G. Gopakumar\",\"doi\":\"10.1109/TENCON.2015.7372789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein-protein interactions play a vital role in the biological processes of all living organisms. These interactions can be represented as networks, in which a node represents a protein and an edge represents an interaction between a pair of proteins. Clustering of these networks leads to the detection of significant protein complexes. FDPClus, a density based clustering method of these networks using the principles of fractal dimension is proposed here. A modified sand box algorithm is used to find the fractal dimension of protein subnetworks. The F-measure values obtained for the Gavin and Collins data set are 0.48 and 0.63 respectively when compared against the CYC2008 yeast benchmark protein complex set. The proposed method shows better performance than other existing methods such as DPClus, MCODE, RNSC, CORE and MCL. Hence it demonstrates the usefulness of fractal dimension of protein subnetworks in the clustering of Protein-Protein Interaction (PPI) networks.\",\"PeriodicalId\":22200,\"journal\":{\"name\":\"TENCON 2015 - 2015 IEEE Region 10 Conference\",\"volume\":\"142 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2015 - 2015 IEEE Region 10 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2015.7372789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2015 - 2015 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2015.7372789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

蛋白质之间的相互作用在所有生物体的生物过程中起着至关重要的作用。这些相互作用可以表示为网络,其中节点代表一个蛋白质,边缘代表一对蛋白质之间的相互作用。这些网络的聚类导致检测重要的蛋白质复合物。本文提出了一种基于密度的分形维数聚类方法FDPClus。采用改进的沙盒算法求解蛋白质子网络的分形维数。与CYC2008酵母基准蛋白复合物集相比,Gavin和Collins数据集获得的f测量值分别为0.48和0.63。与现有的DPClus、MCODE、RNSC、CORE、MCL等方法相比,该方法具有更好的性能。由此证明了分形维数在蛋白质-蛋白质相互作用(PPI)网络聚类中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustering of protein-protein interaction network using fractal dimension of protein subnetworks
Protein-protein interactions play a vital role in the biological processes of all living organisms. These interactions can be represented as networks, in which a node represents a protein and an edge represents an interaction between a pair of proteins. Clustering of these networks leads to the detection of significant protein complexes. FDPClus, a density based clustering method of these networks using the principles of fractal dimension is proposed here. A modified sand box algorithm is used to find the fractal dimension of protein subnetworks. The F-measure values obtained for the Gavin and Collins data set are 0.48 and 0.63 respectively when compared against the CYC2008 yeast benchmark protein complex set. The proposed method shows better performance than other existing methods such as DPClus, MCODE, RNSC, CORE and MCL. Hence it demonstrates the usefulness of fractal dimension of protein subnetworks in the clustering of Protein-Protein Interaction (PPI) networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stress Detection using CNN Fusion Human Point Cloud Data Segmentation based on Normal Vector Estimation using PCA-SVD Approaches for Elderly Activity Daily Living Detection Prediction of AC Breakdown Voltage of Mineral Oil Nanofluid A Study on fNIRS-Based Working Memory Load Assessment and Potential Issues with Extracerebral Artifacts TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), Kochi, India, October 17-20, 2019
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1