{"title":"数据库云中模型驱动的地理弹性","authors":"Tian Guo, P. Shenoy","doi":"10.1109/ICAC.2015.46","DOIUrl":null,"url":null,"abstract":"Motivated by the emergence of distributed clouds, we argue for the need for geo-elastic provisioning of application replicas to effectively handle temporal and spatial workload fluctuations seen by such applications. We present DBScale, a system that tracks geographic variations in the workload to dynamically provision database replicas at different cloud locations across the globe. Our geo-elastic provisioning approach comprises a regression-based model to infer the database query workload from observations of the spatially distributed front-end workload and a two-node open queueing network model to provision databases with both CPU and I/O-intensive query workloads. We implement a prototype of our DBScale system on Amazon EC2's distributed cloud. Our experiments with our prototype show up to a 66% improvement in response time when compared to local elasticity approaches.","PeriodicalId":6643,"journal":{"name":"2015 IEEE International Conference on Autonomic Computing","volume":"43 1","pages":"61-70"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Model-Driven Geo-Elasticity in Database Clouds\",\"authors\":\"Tian Guo, P. Shenoy\",\"doi\":\"10.1109/ICAC.2015.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the emergence of distributed clouds, we argue for the need for geo-elastic provisioning of application replicas to effectively handle temporal and spatial workload fluctuations seen by such applications. We present DBScale, a system that tracks geographic variations in the workload to dynamically provision database replicas at different cloud locations across the globe. Our geo-elastic provisioning approach comprises a regression-based model to infer the database query workload from observations of the spatially distributed front-end workload and a two-node open queueing network model to provision databases with both CPU and I/O-intensive query workloads. We implement a prototype of our DBScale system on Amazon EC2's distributed cloud. Our experiments with our prototype show up to a 66% improvement in response time when compared to local elasticity approaches.\",\"PeriodicalId\":6643,\"journal\":{\"name\":\"2015 IEEE International Conference on Autonomic Computing\",\"volume\":\"43 1\",\"pages\":\"61-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Autonomic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAC.2015.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Autonomic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2015.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Motivated by the emergence of distributed clouds, we argue for the need for geo-elastic provisioning of application replicas to effectively handle temporal and spatial workload fluctuations seen by such applications. We present DBScale, a system that tracks geographic variations in the workload to dynamically provision database replicas at different cloud locations across the globe. Our geo-elastic provisioning approach comprises a regression-based model to infer the database query workload from observations of the spatially distributed front-end workload and a two-node open queueing network model to provision databases with both CPU and I/O-intensive query workloads. We implement a prototype of our DBScale system on Amazon EC2's distributed cloud. Our experiments with our prototype show up to a 66% improvement in response time when compared to local elasticity approaches.