M. Burrows, A. Meisel, D. Balakrishnan, A. Tran, D. Inns, E. Kim, A. Carroll, K. Mikeska
{"title":"正面银触点可实现卓越的复合和细线性能","authors":"M. Burrows, A. Meisel, D. Balakrishnan, A. Tran, D. Inns, E. Kim, A. Carroll, K. Mikeska","doi":"10.1109/PVSC.2013.6744905","DOIUrl":null,"url":null,"abstract":"The standard silicon solar cell process continues on an evolutionary improvement path. High quality monocrystalline cells are now able to reach 19.2 % conversion efficiencies in industrial production. A key enabler for these high efficiencies has been the front-side Ag contact. This paper will discuss recent developments in this technology on two parallel fronts: reduced recombination and fine line printing. Front-side Ag can reduce solar cell recombination currents directly through reduced metal contact saturation current. In addition front-side Ag can indirectly lower recombination through improved contact formation to low saturation current emitters (lightly doped emitters, or LDE). Through improvements in the frit chemistry a superior recombination performance was enabled, yielding a 3 mV Voc gain and 0.1 % efficiency gain over the control. Improvements in the Ag particle dimensions and paste rheology reduced the optimum finger width approximately 10 μm, increasing Jsc by 0.3 mA/cm2 improving the efficiency gain another 0.1 % over the incumbent technology. In net we are able to demonstrate a next generation front-side Ag paste that can improve efficiency 0.2 %, from 18.8 % to 19.0 %.","PeriodicalId":6350,"journal":{"name":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","volume":"321 1","pages":"2171-2175"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Front-side Ag contacts enabling superior recombination and fine-line performance\",\"authors\":\"M. Burrows, A. Meisel, D. Balakrishnan, A. Tran, D. Inns, E. Kim, A. Carroll, K. Mikeska\",\"doi\":\"10.1109/PVSC.2013.6744905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The standard silicon solar cell process continues on an evolutionary improvement path. High quality monocrystalline cells are now able to reach 19.2 % conversion efficiencies in industrial production. A key enabler for these high efficiencies has been the front-side Ag contact. This paper will discuss recent developments in this technology on two parallel fronts: reduced recombination and fine line printing. Front-side Ag can reduce solar cell recombination currents directly through reduced metal contact saturation current. In addition front-side Ag can indirectly lower recombination through improved contact formation to low saturation current emitters (lightly doped emitters, or LDE). Through improvements in the frit chemistry a superior recombination performance was enabled, yielding a 3 mV Voc gain and 0.1 % efficiency gain over the control. Improvements in the Ag particle dimensions and paste rheology reduced the optimum finger width approximately 10 μm, increasing Jsc by 0.3 mA/cm2 improving the efficiency gain another 0.1 % over the incumbent technology. In net we are able to demonstrate a next generation front-side Ag paste that can improve efficiency 0.2 %, from 18.8 % to 19.0 %.\",\"PeriodicalId\":6350,\"journal\":{\"name\":\"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"321 1\",\"pages\":\"2171-2175\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2013.6744905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2013.6744905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Front-side Ag contacts enabling superior recombination and fine-line performance
The standard silicon solar cell process continues on an evolutionary improvement path. High quality monocrystalline cells are now able to reach 19.2 % conversion efficiencies in industrial production. A key enabler for these high efficiencies has been the front-side Ag contact. This paper will discuss recent developments in this technology on two parallel fronts: reduced recombination and fine line printing. Front-side Ag can reduce solar cell recombination currents directly through reduced metal contact saturation current. In addition front-side Ag can indirectly lower recombination through improved contact formation to low saturation current emitters (lightly doped emitters, or LDE). Through improvements in the frit chemistry a superior recombination performance was enabled, yielding a 3 mV Voc gain and 0.1 % efficiency gain over the control. Improvements in the Ag particle dimensions and paste rheology reduced the optimum finger width approximately 10 μm, increasing Jsc by 0.3 mA/cm2 improving the efficiency gain another 0.1 % over the incumbent technology. In net we are able to demonstrate a next generation front-side Ag paste that can improve efficiency 0.2 %, from 18.8 % to 19.0 %.