利用ANSYS对某连杆进行应力和变形分析

M. Bulut, Ö. Cihan
{"title":"利用ANSYS对某连杆进行应力和变形分析","authors":"M. Bulut, Ö. Cihan","doi":"10.18245/IJAET.680511","DOIUrl":null,"url":null,"abstract":"The connecting rod is the intermediate component between the piston and the crankshaft, and its primary function is to move the up and down from the piston pin to the crankshaft converting the reciprocating motion into rotary motion of the piston and crankshaft. This study describes a numerical analysis of connecting rod for determining the critical stress regions. During the analysis of connecting rod, loads corresponding to different engine speeds were assumed to be statically applied, and their corresponding stress and deformation values were evaluated. The power and torque values of engine were utilized to be used as the load boundary conditions in static simulation model, other parameters those of used as input values were geometric dimensions of connecting rod and its material properties. Numerical analyses were performed for the connecting rod made of SS 304 material. A 3D CAD model was developed for the connecting rod through the SOLIDWORKS software, then drawn solid model was transferred to the ANSYS software with Workbench module. Von mises stress and deformation analyses were evaluated under the different engine speeds with indicating that connecting rod did not failure and fractured under the applied external loads.","PeriodicalId":13841,"journal":{"name":"International Journal of Automotive Engineering and Technologies","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stress and deformation analysis of a connecting rod by using ANSYS\",\"authors\":\"M. Bulut, Ö. Cihan\",\"doi\":\"10.18245/IJAET.680511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The connecting rod is the intermediate component between the piston and the crankshaft, and its primary function is to move the up and down from the piston pin to the crankshaft converting the reciprocating motion into rotary motion of the piston and crankshaft. This study describes a numerical analysis of connecting rod for determining the critical stress regions. During the analysis of connecting rod, loads corresponding to different engine speeds were assumed to be statically applied, and their corresponding stress and deformation values were evaluated. The power and torque values of engine were utilized to be used as the load boundary conditions in static simulation model, other parameters those of used as input values were geometric dimensions of connecting rod and its material properties. Numerical analyses were performed for the connecting rod made of SS 304 material. A 3D CAD model was developed for the connecting rod through the SOLIDWORKS software, then drawn solid model was transferred to the ANSYS software with Workbench module. Von mises stress and deformation analyses were evaluated under the different engine speeds with indicating that connecting rod did not failure and fractured under the applied external loads.\",\"PeriodicalId\":13841,\"journal\":{\"name\":\"International Journal of Automotive Engineering and Technologies\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive Engineering and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18245/IJAET.680511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Engineering and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18245/IJAET.680511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

连杆是活塞和曲轴之间的中间部件,它的主要作用是从活塞销向曲轴上下移动,将活塞和曲轴的往复运动转化为旋转运动。本文对连杆进行了数值分析,以确定连杆的临界应力区域。在连杆分析中,假设不同发动机转速下的载荷为静力载荷,计算相应的应力和变形值。静态仿真模型中以发动机的功率和扭矩值作为载荷边界条件,其他参数为连杆的几何尺寸及其材料特性作为输入值。对ss304材料连杆进行了数值分析。通过SOLIDWORKS软件建立连杆的三维CAD模型,然后利用Workbench模块将绘制的实体模型传输到ANSYS软件中。在不同发动机转速下进行了Von mises应力和变形分析,结果表明在外载荷作用下连杆没有发生失效和断裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stress and deformation analysis of a connecting rod by using ANSYS
The connecting rod is the intermediate component between the piston and the crankshaft, and its primary function is to move the up and down from the piston pin to the crankshaft converting the reciprocating motion into rotary motion of the piston and crankshaft. This study describes a numerical analysis of connecting rod for determining the critical stress regions. During the analysis of connecting rod, loads corresponding to different engine speeds were assumed to be statically applied, and their corresponding stress and deformation values were evaluated. The power and torque values of engine were utilized to be used as the load boundary conditions in static simulation model, other parameters those of used as input values were geometric dimensions of connecting rod and its material properties. Numerical analyses were performed for the connecting rod made of SS 304 material. A 3D CAD model was developed for the connecting rod through the SOLIDWORKS software, then drawn solid model was transferred to the ANSYS software with Workbench module. Von mises stress and deformation analyses were evaluated under the different engine speeds with indicating that connecting rod did not failure and fractured under the applied external loads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biodiesel production from waste frying oil by electrochemical method using stainless steel electrode Numerical investigation of the thermal and acoustic effect of material variations on the exhaust muffler Experimental evaluation of gasoline-hexane fuel blends usage in a spark ignition engine Suspension system design for pedal-assisted cargo E-quadricycle Reducing fuel consumption of a light-duty vehicle by incorporating CuO nanoparticles in compressor lubricant of air-conditioning system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1