视频监控中基于纹理特征的人体检测

Nurbaity Sabri, Z. Ibrahim, Mastura Md. Saad, Nur Nabilah Abu Mangshor, N. Jamil
{"title":"视频监控中基于纹理特征的人体检测","authors":"Nurbaity Sabri, Z. Ibrahim, Mastura Md. Saad, Nur Nabilah Abu Mangshor, N. Jamil","doi":"10.1109/ICCSCE.2016.7893543","DOIUrl":null,"url":null,"abstract":"This research presents a method for human detection at night in video surveillance camera. The process of detecting human at night is very challenging due to certain factors such as radiance, silhouette and low external light. A comparative study between three texture features that are Discrete Wavelet Transform (DWT), Histogram of Oriented Gradient (HOG) and Speeded Up Robust Feature (SURF) using Support Vector Machine (SVM), Naïve Bayes and Adaboost classifiers are investigated using primary data extracted from a video surveillance camera at the faculty. The results show that HOG feature with Naïve Bayes detect human in video surveillance better compared to DWT and SURF with SVM and AdaBoost classifiers.","PeriodicalId":6540,"journal":{"name":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"89 1","pages":"45-50"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Human detection in video surveillance using texture features\",\"authors\":\"Nurbaity Sabri, Z. Ibrahim, Mastura Md. Saad, Nur Nabilah Abu Mangshor, N. Jamil\",\"doi\":\"10.1109/ICCSCE.2016.7893543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research presents a method for human detection at night in video surveillance camera. The process of detecting human at night is very challenging due to certain factors such as radiance, silhouette and low external light. A comparative study between three texture features that are Discrete Wavelet Transform (DWT), Histogram of Oriented Gradient (HOG) and Speeded Up Robust Feature (SURF) using Support Vector Machine (SVM), Naïve Bayes and Adaboost classifiers are investigated using primary data extracted from a video surveillance camera at the faculty. The results show that HOG feature with Naïve Bayes detect human in video surveillance better compared to DWT and SURF with SVM and AdaBoost classifiers.\",\"PeriodicalId\":6540,\"journal\":{\"name\":\"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)\",\"volume\":\"89 1\",\"pages\":\"45-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSCE.2016.7893543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE.2016.7893543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本研究提出了一种夜间视频监控摄像机中人的检测方法。由于某些因素,如辐射、轮廓和低外部光,在夜间探测人类的过程是非常具有挑战性的。利用从学院视频监控摄像机中提取的原始数据,对离散小波变换(DWT)、定向梯度直方图(HOG)和加速鲁棒特征(SURF)三种纹理特征进行了比较研究,采用支持向量机(SVM)、Naïve贝叶斯和Adaboost分类器对三种纹理特征进行了比较研究。结果表明,与使用SVM和AdaBoost分类器的DWT和SURF相比,使用Naïve贝叶斯的HOG特征能更好地检测视频监控中的人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human detection in video surveillance using texture features
This research presents a method for human detection at night in video surveillance camera. The process of detecting human at night is very challenging due to certain factors such as radiance, silhouette and low external light. A comparative study between three texture features that are Discrete Wavelet Transform (DWT), Histogram of Oriented Gradient (HOG) and Speeded Up Robust Feature (SURF) using Support Vector Machine (SVM), Naïve Bayes and Adaboost classifiers are investigated using primary data extracted from a video surveillance camera at the faculty. The results show that HOG feature with Naïve Bayes detect human in video surveillance better compared to DWT and SURF with SVM and AdaBoost classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RVP-FLMS: A robust variable power fractional LMS algorithm Verification of nine-phase PMSM model in d-q coordinates with mutual couplings Gamified outcomes-based teaching and learning assessment tool for Mapúa Institute of Technology Empirical testing of prototype real-time multi-hop MAC for Wireless Sensor Networks Improving intrusion detection system detection accuracy and reducing learning time by combining selected features selection and parameters optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1