Jinkun Lin, Chuan Luo, Shaowei Cai, Kaile Su, Dan Hao, Lu Zhang
{"title":"TCA:一种有效的组合测试生成(T)的双模式元启发式算法","authors":"Jinkun Lin, Chuan Luo, Shaowei Cai, Kaile Su, Dan Hao, Lu Zhang","doi":"10.1109/ASE.2015.61","DOIUrl":null,"url":null,"abstract":"Covering arrays (CAs) are often used as test suites for combinatorial interaction testing to discover interaction faults of real-world systems. Most real-world systems involve constraints, so improving algorithms for covering array generation (CAG) with constraints is beneficial. Two popular methods for constrained CAG are greedy construction and meta-heuristic search. Recently, a meta-heuristic framework called two-mode local search has shown great success in solving classic NPhard problems. We are interested whether this method is also powerful in solving the constrained CAG problem. This work proposes a two-mode meta-heuristic framework for constrained CAG efficiently and presents a new meta-heuristic algorithm called TCA. Experiments show that TCA significantly outperforms state-of-the-art solvers on 3-way constrained CAG. Further experiments demonstrate that TCA also performs much better than its competitors on 2-way constrained CAG.","PeriodicalId":6586,"journal":{"name":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"4 1","pages":"494-505"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"TCA: An Efficient Two-Mode Meta-Heuristic Algorithm for Combinatorial Test Generation (T)\",\"authors\":\"Jinkun Lin, Chuan Luo, Shaowei Cai, Kaile Su, Dan Hao, Lu Zhang\",\"doi\":\"10.1109/ASE.2015.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Covering arrays (CAs) are often used as test suites for combinatorial interaction testing to discover interaction faults of real-world systems. Most real-world systems involve constraints, so improving algorithms for covering array generation (CAG) with constraints is beneficial. Two popular methods for constrained CAG are greedy construction and meta-heuristic search. Recently, a meta-heuristic framework called two-mode local search has shown great success in solving classic NPhard problems. We are interested whether this method is also powerful in solving the constrained CAG problem. This work proposes a two-mode meta-heuristic framework for constrained CAG efficiently and presents a new meta-heuristic algorithm called TCA. Experiments show that TCA significantly outperforms state-of-the-art solvers on 3-way constrained CAG. Further experiments demonstrate that TCA also performs much better than its competitors on 2-way constrained CAG.\",\"PeriodicalId\":6586,\"journal\":{\"name\":\"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"4 1\",\"pages\":\"494-505\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASE.2015.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2015.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TCA: An Efficient Two-Mode Meta-Heuristic Algorithm for Combinatorial Test Generation (T)
Covering arrays (CAs) are often used as test suites for combinatorial interaction testing to discover interaction faults of real-world systems. Most real-world systems involve constraints, so improving algorithms for covering array generation (CAG) with constraints is beneficial. Two popular methods for constrained CAG are greedy construction and meta-heuristic search. Recently, a meta-heuristic framework called two-mode local search has shown great success in solving classic NPhard problems. We are interested whether this method is also powerful in solving the constrained CAG problem. This work proposes a two-mode meta-heuristic framework for constrained CAG efficiently and presents a new meta-heuristic algorithm called TCA. Experiments show that TCA significantly outperforms state-of-the-art solvers on 3-way constrained CAG. Further experiments demonstrate that TCA also performs much better than its competitors on 2-way constrained CAG.