{"title":"基于结构化压缩感知的车载通信窄带干扰抑制","authors":"Sicong Liu, Fang Yang, Wenbo Ding, Jian Song","doi":"10.1109/ICCW.2015.7247536","DOIUrl":null,"url":null,"abstract":"In this paper, a novel narrowband interference (NBI) cancellation scheme based on structured compressive sensing (SCS) for dependable vehicular communications systems is proposed. The temporal joint correlation of the repeated training sequences in the preamble are exploited by SCS-based differential measuring (SCS-DM) to acquire the joint measurements matrix of the NBI. Using the proposed structured sparsity adaptive matching pursuit (S-SAMP) algorithm, the sparse high-dimensional NBI signal can be accurately recovered and cancelled out at the receiver. Simulation results validate that the proposed SCS-DM approach outperforms conventional CS-based and non-CS-based NBI mitigation schemes under wireless vehicular channels.","PeriodicalId":6464,"journal":{"name":"2015 IEEE International Conference on Communication Workshop (ICCW)","volume":"33 1","pages":"2375-2380"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Structured compressive sensing based narrowband interference mitigation for vehicular communications\",\"authors\":\"Sicong Liu, Fang Yang, Wenbo Ding, Jian Song\",\"doi\":\"10.1109/ICCW.2015.7247536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel narrowband interference (NBI) cancellation scheme based on structured compressive sensing (SCS) for dependable vehicular communications systems is proposed. The temporal joint correlation of the repeated training sequences in the preamble are exploited by SCS-based differential measuring (SCS-DM) to acquire the joint measurements matrix of the NBI. Using the proposed structured sparsity adaptive matching pursuit (S-SAMP) algorithm, the sparse high-dimensional NBI signal can be accurately recovered and cancelled out at the receiver. Simulation results validate that the proposed SCS-DM approach outperforms conventional CS-based and non-CS-based NBI mitigation schemes under wireless vehicular channels.\",\"PeriodicalId\":6464,\"journal\":{\"name\":\"2015 IEEE International Conference on Communication Workshop (ICCW)\",\"volume\":\"33 1\",\"pages\":\"2375-2380\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Communication Workshop (ICCW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCW.2015.7247536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Communication Workshop (ICCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2015.7247536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structured compressive sensing based narrowband interference mitigation for vehicular communications
In this paper, a novel narrowband interference (NBI) cancellation scheme based on structured compressive sensing (SCS) for dependable vehicular communications systems is proposed. The temporal joint correlation of the repeated training sequences in the preamble are exploited by SCS-based differential measuring (SCS-DM) to acquire the joint measurements matrix of the NBI. Using the proposed structured sparsity adaptive matching pursuit (S-SAMP) algorithm, the sparse high-dimensional NBI signal can be accurately recovered and cancelled out at the receiver. Simulation results validate that the proposed SCS-DM approach outperforms conventional CS-based and non-CS-based NBI mitigation schemes under wireless vehicular channels.