快速阴影多边形渲染器

R. Swanson, L. Thayer
{"title":"快速阴影多边形渲染器","authors":"R. Swanson, L. Thayer","doi":"10.1145/15922.15896","DOIUrl":null,"url":null,"abstract":"Image rendering is the performance bottleneck in many computer-graphics systems today because of its computation-intensive nature. Described here is a one-chip VLSI implementation of a shaded-polygon renderer which provides an affordable solution to the bottleneck. The chip takes advantage of a unique extension to Bresenham's vector drawing algorithm [1] to interpolate four axes (for Red, Green, Blue and Z) across a polygon, in addition to the X and Y values. Its inherent accuracy and ease of high-speed hardware implementation distinguish this new algorithm from interpolation with incrementing fractions (DDA).This chip was designed as part of a workstation primarily for mechanical engineering CAD applications. The pipelining and internal bandwidth possible on the chip allows rendering speeds of over twelve-thousand, 1000-pixel, shaded polygons per second, suitable for interactive manipulation of solids. Described in this paper is the derivation of the new algorithm and its implementation in a pipelined, polygon-rendering chip.","PeriodicalId":20524,"journal":{"name":"Proceedings of the 13th annual conference on Computer graphics and interactive techniques","volume":"322 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1986-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"A fast shaded-polygon renderer\",\"authors\":\"R. Swanson, L. Thayer\",\"doi\":\"10.1145/15922.15896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image rendering is the performance bottleneck in many computer-graphics systems today because of its computation-intensive nature. Described here is a one-chip VLSI implementation of a shaded-polygon renderer which provides an affordable solution to the bottleneck. The chip takes advantage of a unique extension to Bresenham's vector drawing algorithm [1] to interpolate four axes (for Red, Green, Blue and Z) across a polygon, in addition to the X and Y values. Its inherent accuracy and ease of high-speed hardware implementation distinguish this new algorithm from interpolation with incrementing fractions (DDA).This chip was designed as part of a workstation primarily for mechanical engineering CAD applications. The pipelining and internal bandwidth possible on the chip allows rendering speeds of over twelve-thousand, 1000-pixel, shaded polygons per second, suitable for interactive manipulation of solids. Described in this paper is the derivation of the new algorithm and its implementation in a pipelined, polygon-rendering chip.\",\"PeriodicalId\":20524,\"journal\":{\"name\":\"Proceedings of the 13th annual conference on Computer graphics and interactive techniques\",\"volume\":\"322 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th annual conference on Computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/15922.15896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/15922.15896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

由于图像渲染的计算密集型性质,它是当今许多计算机图形系统的性能瓶颈。这里描述的是一个单芯片VLSI实现的阴影多边形渲染器,它为瓶颈提供了一个经济实惠的解决方案。除了X和Y值外,该芯片还利用了对Bresenham矢量绘图算法[1]的独特扩展,可以在多边形上插入四个轴(Red, Green, Blue和Z)。其固有的精度和易于高速硬件实现的特点使该算法与增量分数插值(DDA)算法区别开来。该芯片被设计为工作站的一部分,主要用于机械工程CAD应用。芯片上的流水线和内部带宽允许渲染速度超过每秒12,000,1000像素,阴影多边形,适合于实体的交互式操作。本文描述了新算法的推导及其在流水线多边形渲染芯片上的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fast shaded-polygon renderer
Image rendering is the performance bottleneck in many computer-graphics systems today because of its computation-intensive nature. Described here is a one-chip VLSI implementation of a shaded-polygon renderer which provides an affordable solution to the bottleneck. The chip takes advantage of a unique extension to Bresenham's vector drawing algorithm [1] to interpolate four axes (for Red, Green, Blue and Z) across a polygon, in addition to the X and Y values. Its inherent accuracy and ease of high-speed hardware implementation distinguish this new algorithm from interpolation with incrementing fractions (DDA).This chip was designed as part of a workstation primarily for mechanical engineering CAD applications. The pipelining and internal bandwidth possible on the chip allows rendering speeds of over twelve-thousand, 1000-pixel, shaded polygons per second, suitable for interactive manipulation of solids. Described in this paper is the derivation of the new algorithm and its implementation in a pipelined, polygon-rendering chip.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Creating highly-interactive and graphical user interfaces by demonstration Constructive solid geometry for polyhedral objects Continuous tone representation of three-dimensional objects illuminated by sky light Ray tracing parametric surface patches utilizing numerical techniques and ray coherence A montage method: the overlaying of the computer generated images onto a background photograph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1