基于语言多值逻辑的语言多属性决策方法

Anh Thi Phuong Le, Hoai Nhan Tran, Thi Uyen Thi Nguyen, Dinh-Khang Tran
{"title":"基于语言多值逻辑的语言多属性决策方法","authors":"Anh Thi Phuong Le, Hoai Nhan Tran, Thi Uyen Thi Nguyen, Dinh-Khang Tran","doi":"10.26555/ijain.v8i1.820","DOIUrl":null,"url":null,"abstract":"There are various types of multi-attribute decision-making (MADM) problems in our daily lives and decision-making problems under uncertain environments with vague and imprecise information involved. Therefore, linguistic multi-attribute decision-making problems are an important type studied extensively. Besides, it is easier for decision-makers to use linguistic terms to evaluate/choose among alternatives in real life. Based on the theoretical foundation of the Hedge algebra and linguistic many-valued logic, this study aims to address multi-attribute decision-making problems by linguistic valued qualitative aggregation and reasoning method. In this paper, we construct a finite monotonous Hedge algebra for modeling the linguistic information related to MADM problems and use linguistic many-valued logic for deducing the outcome of decision making. Our method computes directly on linguistic terms without numerical approximation. This method takes advantage of linguistic information processing and shows the benefit of Hedge algebra.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"163 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approach for linguistic multi-attribute decision making based on linguistic many-valued logic\",\"authors\":\"Anh Thi Phuong Le, Hoai Nhan Tran, Thi Uyen Thi Nguyen, Dinh-Khang Tran\",\"doi\":\"10.26555/ijain.v8i1.820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are various types of multi-attribute decision-making (MADM) problems in our daily lives and decision-making problems under uncertain environments with vague and imprecise information involved. Therefore, linguistic multi-attribute decision-making problems are an important type studied extensively. Besides, it is easier for decision-makers to use linguistic terms to evaluate/choose among alternatives in real life. Based on the theoretical foundation of the Hedge algebra and linguistic many-valued logic, this study aims to address multi-attribute decision-making problems by linguistic valued qualitative aggregation and reasoning method. In this paper, we construct a finite monotonous Hedge algebra for modeling the linguistic information related to MADM problems and use linguistic many-valued logic for deducing the outcome of decision making. Our method computes directly on linguistic terms without numerical approximation. This method takes advantage of linguistic information processing and shows the benefit of Hedge algebra.\",\"PeriodicalId\":52195,\"journal\":{\"name\":\"International Journal of Advances in Intelligent Informatics\",\"volume\":\"163 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Intelligent Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26555/ijain.v8i1.820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26555/ijain.v8i1.820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在我们的日常生活中存在着各种类型的多属性决策问题,以及不确定环境下涉及模糊和不精确信息的决策问题。因此,语言多属性决策问题是一类被广泛研究的重要问题。此外,决策者在现实生活中更容易使用语言术语来评估/选择备选方案。本研究在套期保值代数和语言多值逻辑的理论基础上,利用语言多值定性聚合和推理方法解决多属性决策问题。在本文中,我们构造了一个有限单调的对冲代数来建模与MADM问题相关的语言信息,并使用语言多值逻辑来推导决策结果。我们的方法直接对语言项进行计算,不需要数值近似。该方法充分利用了语言信息处理的优势,充分体现了对冲代数的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An approach for linguistic multi-attribute decision making based on linguistic many-valued logic
There are various types of multi-attribute decision-making (MADM) problems in our daily lives and decision-making problems under uncertain environments with vague and imprecise information involved. Therefore, linguistic multi-attribute decision-making problems are an important type studied extensively. Besides, it is easier for decision-makers to use linguistic terms to evaluate/choose among alternatives in real life. Based on the theoretical foundation of the Hedge algebra and linguistic many-valued logic, this study aims to address multi-attribute decision-making problems by linguistic valued qualitative aggregation and reasoning method. In this paper, we construct a finite monotonous Hedge algebra for modeling the linguistic information related to MADM problems and use linguistic many-valued logic for deducing the outcome of decision making. Our method computes directly on linguistic terms without numerical approximation. This method takes advantage of linguistic information processing and shows the benefit of Hedge algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Advances in Intelligent Informatics
International Journal of Advances in Intelligent Informatics Computer Science-Computer Vision and Pattern Recognition
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Emergency sign language recognition from variant of convolutional neural network (CNN) and long short term memory (LSTM) models Self-supervised few-shot learning for real-time traffic sign classification Hybrid machine learning model based on feature decomposition and entropy optimization for higher accuracy flood forecasting Imputation of missing microclimate data of coffee-pine agroforestry with machine learning Scientific reference style using rule-based machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1