推文的时空主题关联检测

Zhi Liu, Yan Huang, Joshua R. Trampier
{"title":"推文的时空主题关联检测","authors":"Zhi Liu, Yan Huang, Joshua R. Trampier","doi":"10.1145/2996913.2996933","DOIUrl":null,"url":null,"abstract":"The analysis of Twitter data can help to predict or explain many real world phenomena. The relationships among events in the real world can be reflected among the topics on social media. In this paper, we propose the concept of topic association and the associated mining algorithms. Topics with close temporal and spatial relationship may have direct or potential association in the real world. Our goal is to mine such topic associations and show their relationships in different time-region frames. We propose to use the concepts of participation ratio and participation index to measure the closeness among topics and propose a spatiotemporal index to calculate them efficiently. With the topic filtering and the topic combination, we further optimize the mining process and the mining results. The algorithms are evaluated on a Twitter dataset with 27,956,257 tweets.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Spatiotemporal topic association detection on tweets\",\"authors\":\"Zhi Liu, Yan Huang, Joshua R. Trampier\",\"doi\":\"10.1145/2996913.2996933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analysis of Twitter data can help to predict or explain many real world phenomena. The relationships among events in the real world can be reflected among the topics on social media. In this paper, we propose the concept of topic association and the associated mining algorithms. Topics with close temporal and spatial relationship may have direct or potential association in the real world. Our goal is to mine such topic associations and show their relationships in different time-region frames. We propose to use the concepts of participation ratio and participation index to measure the closeness among topics and propose a spatiotemporal index to calculate them efficiently. With the topic filtering and the topic combination, we further optimize the mining process and the mining results. The algorithms are evaluated on a Twitter dataset with 27,956,257 tweets.\",\"PeriodicalId\":20525,\"journal\":{\"name\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2996913.2996933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

对Twitter数据的分析可以帮助预测或解释许多现实世界的现象。现实世界中事件之间的关系可以通过社交媒体上的话题来体现。在本文中,我们提出了主题关联的概念和关联挖掘算法。具有密切时空关系的话题在现实世界中可能具有直接或潜在的关联。我们的目标是挖掘这些主题关联,并显示它们在不同时间区域框架中的关系。我们提出使用参与率和参与指数的概念来衡量主题之间的紧密度,并提出一个时空指数来有效地计算它们。通过主题过滤和主题组合,进一步优化挖掘过程和挖掘结果。算法在包含27,956,257条tweet的Twitter数据集上进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatiotemporal topic association detection on tweets
The analysis of Twitter data can help to predict or explain many real world phenomena. The relationships among events in the real world can be reflected among the topics on social media. In this paper, we propose the concept of topic association and the associated mining algorithms. Topics with close temporal and spatial relationship may have direct or potential association in the real world. Our goal is to mine such topic associations and show their relationships in different time-region frames. We propose to use the concepts of participation ratio and participation index to measure the closeness among topics and propose a spatiotemporal index to calculate them efficiently. With the topic filtering and the topic combination, we further optimize the mining process and the mining results. The algorithms are evaluated on a Twitter dataset with 27,956,257 tweets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Location corroborations by mobile devices without traces Knowledge-based trajectory completion from sparse GPS samples Particle filter for real-time human mobility prediction following unprecedented disaster Pyspatiotemporalgeom: a python library for spatiotemporal types and operations Fast transportation network traversal with hyperedges: (industrial paper)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1