Rasha Friji, Hassen Drira, F. Chaieb, Hamza Kchok, S. Kurtek
{"title":"基于刚性和非刚性变换的几何深度神经网络用于人体动作识别","authors":"Rasha Friji, Hassen Drira, F. Chaieb, Hamza Kchok, S. Kurtek","doi":"10.1109/ICCV48922.2021.01238","DOIUrl":null,"url":null,"abstract":"Deep Learning architectures, albeit successful in most computer vision tasks, were designed for data with an underlying Euclidean structure, which is not usually fulfilled since pre-processed data may lie on a non-linear space. In this paper, we propose a geometry aware deep learning approach using rigid and non rigid transformation optimization for skeleton-based action recognition. Skeleton sequences are first modeled as trajectories on Kendall’s shape space and then mapped to the linear tangent space. The resulting structured data are then fed to a deep learning architecture, which includes a layer that optimizes over rigid and non rigid transformations of the 3D skeletons, followed by a CNN-LSTM network. The assessment on two large scale skeleton datasets, namely NTU-RGB+D and NTU-RGB+D 120, has proven that the proposed approach outperforms existing geometric deep learning methods and exceeds recently published approaches with respect to the majority of configurations.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"20 1","pages":"12591-12600"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Geometric Deep Neural Network using Rigid and Non-Rigid Transformations for Human Action Recognition\",\"authors\":\"Rasha Friji, Hassen Drira, F. Chaieb, Hamza Kchok, S. Kurtek\",\"doi\":\"10.1109/ICCV48922.2021.01238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Learning architectures, albeit successful in most computer vision tasks, were designed for data with an underlying Euclidean structure, which is not usually fulfilled since pre-processed data may lie on a non-linear space. In this paper, we propose a geometry aware deep learning approach using rigid and non rigid transformation optimization for skeleton-based action recognition. Skeleton sequences are first modeled as trajectories on Kendall’s shape space and then mapped to the linear tangent space. The resulting structured data are then fed to a deep learning architecture, which includes a layer that optimizes over rigid and non rigid transformations of the 3D skeletons, followed by a CNN-LSTM network. The assessment on two large scale skeleton datasets, namely NTU-RGB+D and NTU-RGB+D 120, has proven that the proposed approach outperforms existing geometric deep learning methods and exceeds recently published approaches with respect to the majority of configurations.\",\"PeriodicalId\":6820,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"20 1\",\"pages\":\"12591-12600\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV48922.2021.01238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.01238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geometric Deep Neural Network using Rigid and Non-Rigid Transformations for Human Action Recognition
Deep Learning architectures, albeit successful in most computer vision tasks, were designed for data with an underlying Euclidean structure, which is not usually fulfilled since pre-processed data may lie on a non-linear space. In this paper, we propose a geometry aware deep learning approach using rigid and non rigid transformation optimization for skeleton-based action recognition. Skeleton sequences are first modeled as trajectories on Kendall’s shape space and then mapped to the linear tangent space. The resulting structured data are then fed to a deep learning architecture, which includes a layer that optimizes over rigid and non rigid transformations of the 3D skeletons, followed by a CNN-LSTM network. The assessment on two large scale skeleton datasets, namely NTU-RGB+D and NTU-RGB+D 120, has proven that the proposed approach outperforms existing geometric deep learning methods and exceeds recently published approaches with respect to the majority of configurations.