利用电网支持目标优化太阳能光伏发电容量的分配

V. Vermeulen, J. Strauss, H. Vermeulen
{"title":"利用电网支持目标优化太阳能光伏发电容量的分配","authors":"V. Vermeulen, J. Strauss, H. Vermeulen","doi":"10.1109/POWERAFRICA.2017.7991224","DOIUrl":null,"url":null,"abstract":"This paper presents the results of an optimisation analysis aimed at exploring the geographical allocation of solar PV generation capacity in the context of grid support considerations such as average daily yield and variability, with particular focus on the full year scenario compared to the high demand season. All problem cases were evaluated using a combination of genetic algorithm (GA) and pattern search techniques implemented via MATLAB's Global Optimization Toolbox. A hybrid pattern search method incorporating a GA search step produced the best overall solution quality, but could benefit from parameter adjustment to improve its solution consistency. The optimal allocations found for all objective functions are generally distinctly different for the full year scenario and the high demand season, indicating potential advantages in applying a seasonally variable feed-in tariff for solar PV generation. Meanwhile the objectives of daily energy maximisation and variability minimisation were found to produce contrasting results.","PeriodicalId":6601,"journal":{"name":"2017 IEEE PES PowerAfrica","volume":"67 1","pages":"202-207"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimisation of the allocation of solar PV generation capacity using grid support objectives\",\"authors\":\"V. Vermeulen, J. Strauss, H. Vermeulen\",\"doi\":\"10.1109/POWERAFRICA.2017.7991224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the results of an optimisation analysis aimed at exploring the geographical allocation of solar PV generation capacity in the context of grid support considerations such as average daily yield and variability, with particular focus on the full year scenario compared to the high demand season. All problem cases were evaluated using a combination of genetic algorithm (GA) and pattern search techniques implemented via MATLAB's Global Optimization Toolbox. A hybrid pattern search method incorporating a GA search step produced the best overall solution quality, but could benefit from parameter adjustment to improve its solution consistency. The optimal allocations found for all objective functions are generally distinctly different for the full year scenario and the high demand season, indicating potential advantages in applying a seasonally variable feed-in tariff for solar PV generation. Meanwhile the objectives of daily energy maximisation and variability minimisation were found to produce contrasting results.\",\"PeriodicalId\":6601,\"journal\":{\"name\":\"2017 IEEE PES PowerAfrica\",\"volume\":\"67 1\",\"pages\":\"202-207\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE PES PowerAfrica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POWERAFRICA.2017.7991224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE PES PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERAFRICA.2017.7991224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一项优化分析的结果,该分析旨在探索在电网支持考虑的背景下太阳能光伏发电容量的地理分配,如平均日产量和可变性,并特别关注与高需求季节相比的全年情景。使用遗传算法(GA)和模式搜索技术(通过MATLAB的全局优化工具箱实现)对所有问题案例进行评估。结合遗传算法搜索步骤的混合模式搜索方法可以获得最佳的整体解质量,但可以通过参数调整来提高其解的一致性。所有目标函数的最佳分配通常在全年情景和高需求季节明显不同,这表明对太阳能光伏发电应用季节性可变上网电价的潜在优势。同时,发现每日能量最大化和可变性最小化的目标产生了截然不同的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimisation of the allocation of solar PV generation capacity using grid support objectives
This paper presents the results of an optimisation analysis aimed at exploring the geographical allocation of solar PV generation capacity in the context of grid support considerations such as average daily yield and variability, with particular focus on the full year scenario compared to the high demand season. All problem cases were evaluated using a combination of genetic algorithm (GA) and pattern search techniques implemented via MATLAB's Global Optimization Toolbox. A hybrid pattern search method incorporating a GA search step produced the best overall solution quality, but could benefit from parameter adjustment to improve its solution consistency. The optimal allocations found for all objective functions are generally distinctly different for the full year scenario and the high demand season, indicating potential advantages in applying a seasonally variable feed-in tariff for solar PV generation. Meanwhile the objectives of daily energy maximisation and variability minimisation were found to produce contrasting results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimized network planning of mini-grids for the rural electrification of developing countries Application of statistical tools in power transformer FRA results interpretation: Transformer winding diagnosis based on frequency response analysis An algorithm for micro-load shedding in generation constrained electricity distribution network Asynchronous interconnection of the proposed East Africa Power Pool (EAPP) Impact of large scale grid-connected wind generators on the power system network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1