早期地球的宜居性:微弱的年轻太阳下的液态水,由于附近的月球引起的强烈潮汐加热而变得容易

R. Heller, J. Duda, M. Winkler, J. Reitner, L. Gizon
{"title":"早期地球的宜居性:微弱的年轻太阳下的液态水,由于附近的月球引起的强烈潮汐加热而变得容易","authors":"R. Heller, J. Duda, M. Winkler, J. Reitner, L. Gizon","doi":"10.31223/osf.io/9nrwh","DOIUrl":null,"url":null,"abstract":"Geological evidence suggests liquid water near the Earth's surface as early as 4.4 gigayears ago when the faint young Sun only radiated about 70 % of its modern power output. At this point, the Earth should have been a global snowball. An extreme atmospheric greenhouse effect, an initially more massive Sun, release of heat acquired during the accretion process of protoplanetary material, and radioactivity of the early Earth material have been proposed as alternative reservoirs or traps for heat. For now, the faint-young-sun paradox persists as one of the most important unsolved problems in our understanding of the origin of life on Earth. Here we use astrophysical models to explore the possibility that the new-born Moon, which formed about 69 million years (Myr) after the ignition of the Sun, generated extreme tidal friction - and therefore heat - in the Hadean and possibly the Archean Earth. We show that the Earth-Moon system has lost about 3e31 J, (99 % of its initial mechanical energy budget) as tidal heat. Tidal heating of roughly 10 W/m^2 through the surface on a time scale of 100 Myr could have accounted for a temperature increase of up to 5 degrees Celsius on the early Earth. This heating effect alone does not solve the faint-young-sun paradox but it could have played a key role in combination with other effects. Future studies of the interplay of tidal heating, the evolution of the solar power output, and the atmospheric (greenhouse) effects on the early Earth could help in solving the faint-young-sun paradox.","PeriodicalId":8428,"journal":{"name":"arXiv: Earth and Planetary Astrophysics","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Habitability of the early Earth: Liquid water under a faint young Sun facilitated by strong tidal heating due to a nearby Moon\",\"authors\":\"R. Heller, J. Duda, M. Winkler, J. Reitner, L. Gizon\",\"doi\":\"10.31223/osf.io/9nrwh\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geological evidence suggests liquid water near the Earth's surface as early as 4.4 gigayears ago when the faint young Sun only radiated about 70 % of its modern power output. At this point, the Earth should have been a global snowball. An extreme atmospheric greenhouse effect, an initially more massive Sun, release of heat acquired during the accretion process of protoplanetary material, and radioactivity of the early Earth material have been proposed as alternative reservoirs or traps for heat. For now, the faint-young-sun paradox persists as one of the most important unsolved problems in our understanding of the origin of life on Earth. Here we use astrophysical models to explore the possibility that the new-born Moon, which formed about 69 million years (Myr) after the ignition of the Sun, generated extreme tidal friction - and therefore heat - in the Hadean and possibly the Archean Earth. We show that the Earth-Moon system has lost about 3e31 J, (99 % of its initial mechanical energy budget) as tidal heat. Tidal heating of roughly 10 W/m^2 through the surface on a time scale of 100 Myr could have accounted for a temperature increase of up to 5 degrees Celsius on the early Earth. This heating effect alone does not solve the faint-young-sun paradox but it could have played a key role in combination with other effects. Future studies of the interplay of tidal heating, the evolution of the solar power output, and the atmospheric (greenhouse) effects on the early Earth could help in solving the faint-young-sun paradox.\",\"PeriodicalId\":8428,\"journal\":{\"name\":\"arXiv: Earth and Planetary Astrophysics\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Earth and Planetary Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31223/osf.io/9nrwh\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31223/osf.io/9nrwh","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

地质证据表明,早在44亿年前,地球表面附近就有液态水,当时微弱的年轻太阳的辐射功率只有现在的70%左右。在这一点上,地球应该是一个全球性的雪球。极端的大气温室效应、最初质量更大的太阳、原行星物质在吸积过程中获得的热量释放以及早期地球物质的放射性被认为是热量的替代储存库或陷阱。到目前为止,在我们对地球生命起源的理解中,“微弱的年轻太阳悖论”仍然是最重要的未解决问题之一。在这里,我们使用天体物理模型来探索新诞生的月球的可能性,它形成于太阳点燃后大约6900万年(Myr),在冥古宙和太古宙的地球上产生了极端的潮汐摩擦,因此产生了热量。我们发现地月系统以潮汐热的形式损失了约3e31焦耳(占其初始机械能预算的99%)。在100迈拉的时间尺度上,通过地表的潮汐加热大约为10瓦/米^2,这可以解释地球早期温度升高高达5摄氏度的原因。这种加热效应本身并不能解决微弱年轻太阳悖论,但它可能与其他效应结合在一起发挥了关键作用。未来对潮汐加热、太阳能输出的演变和早期地球上的大气(温室)效应的相互作用的研究,可能有助于解决“微弱的年轻太阳悖论”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Habitability of the early Earth: Liquid water under a faint young Sun facilitated by strong tidal heating due to a nearby Moon
Geological evidence suggests liquid water near the Earth's surface as early as 4.4 gigayears ago when the faint young Sun only radiated about 70 % of its modern power output. At this point, the Earth should have been a global snowball. An extreme atmospheric greenhouse effect, an initially more massive Sun, release of heat acquired during the accretion process of protoplanetary material, and radioactivity of the early Earth material have been proposed as alternative reservoirs or traps for heat. For now, the faint-young-sun paradox persists as one of the most important unsolved problems in our understanding of the origin of life on Earth. Here we use astrophysical models to explore the possibility that the new-born Moon, which formed about 69 million years (Myr) after the ignition of the Sun, generated extreme tidal friction - and therefore heat - in the Hadean and possibly the Archean Earth. We show that the Earth-Moon system has lost about 3e31 J, (99 % of its initial mechanical energy budget) as tidal heat. Tidal heating of roughly 10 W/m^2 through the surface on a time scale of 100 Myr could have accounted for a temperature increase of up to 5 degrees Celsius on the early Earth. This heating effect alone does not solve the faint-young-sun paradox but it could have played a key role in combination with other effects. Future studies of the interplay of tidal heating, the evolution of the solar power output, and the atmospheric (greenhouse) effects on the early Earth could help in solving the faint-young-sun paradox.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting The Averaged Problem in The Case of Mean-Motion Resonances of The Restricted Three-Body Problem. Global Rigorous Treatment and Application To The Co-Orbital Motion. Automatic planetary defense Deflecting NEOs by missiles shot from L1 and L3 (Earth-Moon). Modeling the nonaxisymmetric structure in the HD 163296 disk with planet-disk interaction Origin and dynamical evolution of the asteroid belt Revised planet brightness temperatures using the Planck/LFI 2018 data release
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1