基于共阵相关重构的共素阵到达方向估计:一位视角

Chengwei Zhou, Yujie Gu, Zhiguo Shi, M. Haardt
{"title":"基于共阵相关重构的共素阵到达方向估计:一位视角","authors":"Chengwei Zhou, Yujie Gu, Zhiguo Shi, M. Haardt","doi":"10.1109/SAM48682.2020.9104377","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of underdetermined direction-of-arrival (DOA) estimation using coprime arrays from a ont-bit perspective, where the coarray correlations of the quantized sparse measurements are explored for augmented covariance matrix reconstruction. To fully utilize the coarray signals calculated from the one-bit coprime array measurements for DOA estimation, a correlation reconstruction problem is formulated to obtain the quantized covariance matrix corresponding to a filled coarray containing the discontiguous one, where the one-bit quantization transforms the possibilities of correlations from an infinite to a finite number. The performance of the proposed method is validated from the aspects of degrees- of-freedom (DOFs), estimation accuracy, as well as the resolution performance. Simulation results demonstrate that the proposed method not only retains full achievable DOFs of the coprime array, but is also capable of presenting a better DOA estimation performance than the non-quantization approaches.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"38 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Direction-of-Arrival Estimation for Coprime Arrays via Coarray Correlation Reconstruction: A One-Bit Perspective\",\"authors\":\"Chengwei Zhou, Yujie Gu, Zhiguo Shi, M. Haardt\",\"doi\":\"10.1109/SAM48682.2020.9104377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the problem of underdetermined direction-of-arrival (DOA) estimation using coprime arrays from a ont-bit perspective, where the coarray correlations of the quantized sparse measurements are explored for augmented covariance matrix reconstruction. To fully utilize the coarray signals calculated from the one-bit coprime array measurements for DOA estimation, a correlation reconstruction problem is formulated to obtain the quantized covariance matrix corresponding to a filled coarray containing the discontiguous one, where the one-bit quantization transforms the possibilities of correlations from an infinite to a finite number. The performance of the proposed method is validated from the aspects of degrees- of-freedom (DOFs), estimation accuracy, as well as the resolution performance. Simulation results demonstrate that the proposed method not only retains full achievable DOFs of the coprime array, but is also capable of presenting a better DOA estimation performance than the non-quantization approaches.\",\"PeriodicalId\":6753,\"journal\":{\"name\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"38 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM48682.2020.9104377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在本文中,我们从一比特的角度考虑了用互素阵列进行欠定到达方向(DOA)估计的问题,其中探讨了量化稀疏测量的共阵相关性,用于增广协方差矩阵重建。为了充分利用由一比特协素数阵列测量得到的共阵信号进行DOA估计,提出了一个相关重构问题,得到包含不连续共阵的填充共阵对应的量化协方差矩阵,其中一比特量化将相关的可能性从无限数转换为有限数。从自由度、估计精度和分辨率等方面验证了该方法的性能。仿真结果表明,与非量化方法相比,该方法不仅保留了原素数阵列的完全可达DOFs,而且具有更好的DOA估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direction-of-Arrival Estimation for Coprime Arrays via Coarray Correlation Reconstruction: A One-Bit Perspective
In this paper, we consider the problem of underdetermined direction-of-arrival (DOA) estimation using coprime arrays from a ont-bit perspective, where the coarray correlations of the quantized sparse measurements are explored for augmented covariance matrix reconstruction. To fully utilize the coarray signals calculated from the one-bit coprime array measurements for DOA estimation, a correlation reconstruction problem is formulated to obtain the quantized covariance matrix corresponding to a filled coarray containing the discontiguous one, where the one-bit quantization transforms the possibilities of correlations from an infinite to a finite number. The performance of the proposed method is validated from the aspects of degrees- of-freedom (DOFs), estimation accuracy, as well as the resolution performance. Simulation results demonstrate that the proposed method not only retains full achievable DOFs of the coprime array, but is also capable of presenting a better DOA estimation performance than the non-quantization approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1