现代换热器发展与完善的新趋势

B. Soroka
{"title":"现代换热器发展与完善的新趋势","authors":"B. Soroka","doi":"10.33070/ETARS.2.2019.07","DOIUrl":null,"url":null,"abstract":"Some actual aspects of advancement the problem of improvement the heat exchange equipment are considered in the paper. First of all the actual items related to middle and high temperature recuperators are discussed with proper up-to — date approaches. \nThe classification of flue gases heat recovery appliances has been proposed along with the statement and analysis of the main characteristics of the recovery plants and option the ways of optimization the mentioned characteristics. \nThe problem of Reynolds analogy (similarity of relative change the heat transfer phenomenon and variation the hydraulic resistance) within the channels of different purpose and of various cross-section supplied with and without the obstacles has been analyzed in application to separate cases of flow along the surfaces equipped with the cavities (dimples) or the convex elements. \nThermal Performance Factor (TPF) of the heat exchange process is qualitatively like to Reynolds analogy factor and is highly depended upon rate of heat transfer and of friction factor in conditions of the scheme under consideration for flow over the surface or flow within the channel. The various media has been compared used as a working body in the heat exchanger’s channels: gaseous, liquid and the nanofluids, the last appeared in practice since 2000. \nAnalysis has been carried out on effect of using the secondary energy emitters (SEE) arranged inside the tube channels, on resulting heat flux by heat exchange between outward flow of combustion products and the inner air flow. Bibl. 23, Fig. 6.","PeriodicalId":11558,"journal":{"name":"Energy Technologies & Resource Saving","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NOVEL TRENDS OF DEVELOPMENT AND PERFECTION THE MODERN HEAT EXCHANGERS\",\"authors\":\"B. Soroka\",\"doi\":\"10.33070/ETARS.2.2019.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some actual aspects of advancement the problem of improvement the heat exchange equipment are considered in the paper. First of all the actual items related to middle and high temperature recuperators are discussed with proper up-to — date approaches. \\nThe classification of flue gases heat recovery appliances has been proposed along with the statement and analysis of the main characteristics of the recovery plants and option the ways of optimization the mentioned characteristics. \\nThe problem of Reynolds analogy (similarity of relative change the heat transfer phenomenon and variation the hydraulic resistance) within the channels of different purpose and of various cross-section supplied with and without the obstacles has been analyzed in application to separate cases of flow along the surfaces equipped with the cavities (dimples) or the convex elements. \\nThermal Performance Factor (TPF) of the heat exchange process is qualitatively like to Reynolds analogy factor and is highly depended upon rate of heat transfer and of friction factor in conditions of the scheme under consideration for flow over the surface or flow within the channel. The various media has been compared used as a working body in the heat exchanger’s channels: gaseous, liquid and the nanofluids, the last appeared in practice since 2000. \\nAnalysis has been carried out on effect of using the secondary energy emitters (SEE) arranged inside the tube channels, on resulting heat flux by heat exchange between outward flow of combustion products and the inner air flow. Bibl. 23, Fig. 6.\",\"PeriodicalId\":11558,\"journal\":{\"name\":\"Energy Technologies & Resource Saving\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Technologies & Resource Saving\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33070/ETARS.2.2019.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Technologies & Resource Saving","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33070/ETARS.2.2019.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文从实际出发,对改进换热设备的问题进行了探讨。首先对中高温换热器的实际问题进行了讨论,并提出了相应的最新方法。提出了烟气热回收装置的分类,对回收装置的主要特点进行了阐述和分析,并对上述特点的优化方法进行了选择。在有障碍物和无障碍物的不同目的和不同截面的通道内,应用雷诺类比(换热现象的相对变化和水力阻力变化的相似性)问题,分析了沿空腔(凹窝)面或凸单元面流动的分离情况。换热过程的热性能因子(TPF)在性质上类似于雷诺兹类比因子,在考虑的方案条件下,表面流动或通道内流动的换热率和摩擦因子高度依赖于传热率。在热交换器通道中作为工作体的各种介质进行了比较:气体、液体和纳米流体,最后一种介质自2000年以来出现在实践中。分析了设置在管道内的二次能量发射器(SEE)对燃烧产物向外流动与内部气流进行热交换所产生的热流密度的影响。圣经23章,图6节
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NOVEL TRENDS OF DEVELOPMENT AND PERFECTION THE MODERN HEAT EXCHANGERS
Some actual aspects of advancement the problem of improvement the heat exchange equipment are considered in the paper. First of all the actual items related to middle and high temperature recuperators are discussed with proper up-to — date approaches. The classification of flue gases heat recovery appliances has been proposed along with the statement and analysis of the main characteristics of the recovery plants and option the ways of optimization the mentioned characteristics. The problem of Reynolds analogy (similarity of relative change the heat transfer phenomenon and variation the hydraulic resistance) within the channels of different purpose and of various cross-section supplied with and without the obstacles has been analyzed in application to separate cases of flow along the surfaces equipped with the cavities (dimples) or the convex elements. Thermal Performance Factor (TPF) of the heat exchange process is qualitatively like to Reynolds analogy factor and is highly depended upon rate of heat transfer and of friction factor in conditions of the scheme under consideration for flow over the surface or flow within the channel. The various media has been compared used as a working body in the heat exchanger’s channels: gaseous, liquid and the nanofluids, the last appeared in practice since 2000. Analysis has been carried out on effect of using the secondary energy emitters (SEE) arranged inside the tube channels, on resulting heat flux by heat exchange between outward flow of combustion products and the inner air flow. Bibl. 23, Fig. 6.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
THERMOHYDRAULIC DISTRIBUTION IN TWISTED MICRO HEAT EXCHANGERS MOUNTED IN ANNULAR CHANNELS ENERGY EFFICIENT EQUIPMENT FOR MODERNIZATION OF THE GAS BOILERS POWER 0.1-30 MW STATE AND PROSPECTS OF THERMAL POWER GENERATION IN THE CONDITIONS OF UKRAINE’S COURSE ON CARBON-FREE ENERGY A STATE OF ART AND PROSPECTS OF HANDLING USED PET BOTTLES STUDY OF THE OXIDATION PROCESS OF NITROGEN OXIDES BY OZONE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1