Sarvin Zamanzad-Ghavidel, R. Sobhani, Sina Fazeli, L. Noto, C. De Michele, D. Pumo
{"title":"利用软计算方法估算地下水电导率的时空:伊朗东阿塞拜疆省分析","authors":"Sarvin Zamanzad-Ghavidel, R. Sobhani, Sina Fazeli, L. Noto, C. De Michele, D. Pumo","doi":"10.2166/ws.2023.195","DOIUrl":null,"url":null,"abstract":"\n \n The evaluation of groundwater quality plays an important role in the management of groundwater. The main objectives of the present work are to develop a novel soft computing framework including Adaptive Neuro-Fuzzy Inference System (ANFIS), Wavelet-ANFIS (WANFIS), Gene Expression Programming (GEP), and Wavelet-GEP (WGEP) for the temporal and spatial estimation of groundwater electrical conductivity (EC) in the East Azerbaijan province, Iran over 2001–2020. The results demonstrate the importance of wavelet transform application; the performance percentage enhancement of the WANFIS and WGEP models compared to the ANFIS and GEP, using the RMSE criterion, ranged from 15.48 to 51.09% and from 5.06 to 86.95%, respectively. All the developed models showed the WGEP superior compared to others. The impact of land use characteristics, climatic conditions, and geological features on groundwater quality showed that there is a direct relationship between the extent of agricultural land, semi-arid climate conditions and groundwater EC amounts. The results demonstrated that the values of EC increase from east to west, indicating the direct exchange of surface and groundwater in the study area. Moreover, groundwater quality changes significantly across the width of the fault, with groundwater EC in the northern part of the fault higher than that in the southern part.","PeriodicalId":17553,"journal":{"name":"Journal of Water Supply Research and Technology-aqua","volume":"33 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal and spatial estimation of groundwater electrical conductivity using soft computing approaches: analysis of East Azerbaijan Province, Iran\",\"authors\":\"Sarvin Zamanzad-Ghavidel, R. Sobhani, Sina Fazeli, L. Noto, C. De Michele, D. Pumo\",\"doi\":\"10.2166/ws.2023.195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n The evaluation of groundwater quality plays an important role in the management of groundwater. The main objectives of the present work are to develop a novel soft computing framework including Adaptive Neuro-Fuzzy Inference System (ANFIS), Wavelet-ANFIS (WANFIS), Gene Expression Programming (GEP), and Wavelet-GEP (WGEP) for the temporal and spatial estimation of groundwater electrical conductivity (EC) in the East Azerbaijan province, Iran over 2001–2020. The results demonstrate the importance of wavelet transform application; the performance percentage enhancement of the WANFIS and WGEP models compared to the ANFIS and GEP, using the RMSE criterion, ranged from 15.48 to 51.09% and from 5.06 to 86.95%, respectively. All the developed models showed the WGEP superior compared to others. The impact of land use characteristics, climatic conditions, and geological features on groundwater quality showed that there is a direct relationship between the extent of agricultural land, semi-arid climate conditions and groundwater EC amounts. The results demonstrated that the values of EC increase from east to west, indicating the direct exchange of surface and groundwater in the study area. Moreover, groundwater quality changes significantly across the width of the fault, with groundwater EC in the northern part of the fault higher than that in the southern part.\",\"PeriodicalId\":17553,\"journal\":{\"name\":\"Journal of Water Supply Research and Technology-aqua\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Supply Research and Technology-aqua\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/ws.2023.195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply Research and Technology-aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
Temporal and spatial estimation of groundwater electrical conductivity using soft computing approaches: analysis of East Azerbaijan Province, Iran
The evaluation of groundwater quality plays an important role in the management of groundwater. The main objectives of the present work are to develop a novel soft computing framework including Adaptive Neuro-Fuzzy Inference System (ANFIS), Wavelet-ANFIS (WANFIS), Gene Expression Programming (GEP), and Wavelet-GEP (WGEP) for the temporal and spatial estimation of groundwater electrical conductivity (EC) in the East Azerbaijan province, Iran over 2001–2020. The results demonstrate the importance of wavelet transform application; the performance percentage enhancement of the WANFIS and WGEP models compared to the ANFIS and GEP, using the RMSE criterion, ranged from 15.48 to 51.09% and from 5.06 to 86.95%, respectively. All the developed models showed the WGEP superior compared to others. The impact of land use characteristics, climatic conditions, and geological features on groundwater quality showed that there is a direct relationship between the extent of agricultural land, semi-arid climate conditions and groundwater EC amounts. The results demonstrated that the values of EC increase from east to west, indicating the direct exchange of surface and groundwater in the study area. Moreover, groundwater quality changes significantly across the width of the fault, with groundwater EC in the northern part of the fault higher than that in the southern part.
期刊介绍:
Journal of Water Supply: Research and Technology - Aqua publishes peer-reviewed scientific & technical, review, and practical/ operational papers dealing with research and development in water supply technology and management, including economics, training and public relations on a national and international level.