Sitti Wetenriajeng Sidehabi, A. Suyuti, I. Areni, I. Nurtanio
{"title":"基于k -均值聚类和人工神经网络的百香果成熟度分类","authors":"Sitti Wetenriajeng Sidehabi, A. Suyuti, I. Areni, I. Nurtanio","doi":"10.1109/ICOIACT.2018.8350728","DOIUrl":null,"url":null,"abstract":"This purpose of this study is to identify the level of ripeness of the passion fruit. The levels are classified into three distinguished stages: fruit in a ripe stage, a nearly ripe stage, and an unripe stage. The passion fruit-sorting system with artificial intelligence is an innovation of fruit sorting technology for industrial markets because it is very cost efficient and effective for a large production process instead of relying on manual labor process. The method used in this research is K-Means Clustering to perform passion fruit segmentation and Artificial Neural Network for classification based on RGB and A features. The input data is passion fruit video from 6 different sides. This study uses 75 passion fruit videos as training data and 20 videos as data testing with duration 5 seconds per video. The result achieves system accuracy of 90% with classification errors occur in the nearly ripe and unripe fruit due to the color closeness.","PeriodicalId":6660,"journal":{"name":"2018 International Conference on Information and Communications Technology (ICOIACT)","volume":"54 1","pages":"304-309"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Classification on passion fruit's ripeness using K-means clustering and artificial neural network\",\"authors\":\"Sitti Wetenriajeng Sidehabi, A. Suyuti, I. Areni, I. Nurtanio\",\"doi\":\"10.1109/ICOIACT.2018.8350728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This purpose of this study is to identify the level of ripeness of the passion fruit. The levels are classified into three distinguished stages: fruit in a ripe stage, a nearly ripe stage, and an unripe stage. The passion fruit-sorting system with artificial intelligence is an innovation of fruit sorting technology for industrial markets because it is very cost efficient and effective for a large production process instead of relying on manual labor process. The method used in this research is K-Means Clustering to perform passion fruit segmentation and Artificial Neural Network for classification based on RGB and A features. The input data is passion fruit video from 6 different sides. This study uses 75 passion fruit videos as training data and 20 videos as data testing with duration 5 seconds per video. The result achieves system accuracy of 90% with classification errors occur in the nearly ripe and unripe fruit due to the color closeness.\",\"PeriodicalId\":6660,\"journal\":{\"name\":\"2018 International Conference on Information and Communications Technology (ICOIACT)\",\"volume\":\"54 1\",\"pages\":\"304-309\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Information and Communications Technology (ICOIACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIACT.2018.8350728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Communications Technology (ICOIACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIACT.2018.8350728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification on passion fruit's ripeness using K-means clustering and artificial neural network
This purpose of this study is to identify the level of ripeness of the passion fruit. The levels are classified into three distinguished stages: fruit in a ripe stage, a nearly ripe stage, and an unripe stage. The passion fruit-sorting system with artificial intelligence is an innovation of fruit sorting technology for industrial markets because it is very cost efficient and effective for a large production process instead of relying on manual labor process. The method used in this research is K-Means Clustering to perform passion fruit segmentation and Artificial Neural Network for classification based on RGB and A features. The input data is passion fruit video from 6 different sides. This study uses 75 passion fruit videos as training data and 20 videos as data testing with duration 5 seconds per video. The result achieves system accuracy of 90% with classification errors occur in the nearly ripe and unripe fruit due to the color closeness.