{"title":"一维纳米矿物在光场中的磁组装与功能化","authors":"M. Fu, Zepeng Zhang, R. Jiang, Hongbao Liu","doi":"10.5772/INTECHOPEN.98908","DOIUrl":null,"url":null,"abstract":"Magnetic particles can be oriented along the magnetic field direction to achieve orderly arrangement under the magnetic field. Optical functional materials such as photonic crystal and liquid crystal can be obtained according to magnetic induced ordered nanostructure assembly. One-dimensional natural clay minerals with unique structure, composition and properties can be used as structural base to prepare anisotropic magnetic nanoparticles by decorated with magnetic particles, achieving unique optical functional properties. In this chapter, one-dimensional clay minerals@Fe3O4 nanocomposites were prepared by co-precipitation. The resulting one-dimensional clay minerals@Fe3O4 nanocomposites are superparamagnetic. They can be oriented along the direction of the magnetic field and produce an instantaneously reversible response. These magnetic mineral materials can be dispersed in a dilute acid solution to form stable colloid solutions. These stable colloid solutions produce a similar magnetically controlled liquid crystal with Bragg diffraction under an external magnetic field. Their optical properties are affected by magnetic field intensity, magnetic field direction and solid content. The results show that the functionalization of one-dimensional clay minerals has potential applications in display devices, photonic switches and other fields.","PeriodicalId":10241,"journal":{"name":"Clay and Clay Minerals [Working Title]","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Assembly and Functionalization of One-Dimensional Nanominerals in Optical Field\",\"authors\":\"M. Fu, Zepeng Zhang, R. Jiang, Hongbao Liu\",\"doi\":\"10.5772/INTECHOPEN.98908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic particles can be oriented along the magnetic field direction to achieve orderly arrangement under the magnetic field. Optical functional materials such as photonic crystal and liquid crystal can be obtained according to magnetic induced ordered nanostructure assembly. One-dimensional natural clay minerals with unique structure, composition and properties can be used as structural base to prepare anisotropic magnetic nanoparticles by decorated with magnetic particles, achieving unique optical functional properties. In this chapter, one-dimensional clay minerals@Fe3O4 nanocomposites were prepared by co-precipitation. The resulting one-dimensional clay minerals@Fe3O4 nanocomposites are superparamagnetic. They can be oriented along the direction of the magnetic field and produce an instantaneously reversible response. These magnetic mineral materials can be dispersed in a dilute acid solution to form stable colloid solutions. These stable colloid solutions produce a similar magnetically controlled liquid crystal with Bragg diffraction under an external magnetic field. Their optical properties are affected by magnetic field intensity, magnetic field direction and solid content. The results show that the functionalization of one-dimensional clay minerals has potential applications in display devices, photonic switches and other fields.\",\"PeriodicalId\":10241,\"journal\":{\"name\":\"Clay and Clay Minerals [Working Title]\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clay and Clay Minerals [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.98908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clay and Clay Minerals [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.98908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnetic Assembly and Functionalization of One-Dimensional Nanominerals in Optical Field
Magnetic particles can be oriented along the magnetic field direction to achieve orderly arrangement under the magnetic field. Optical functional materials such as photonic crystal and liquid crystal can be obtained according to magnetic induced ordered nanostructure assembly. One-dimensional natural clay minerals with unique structure, composition and properties can be used as structural base to prepare anisotropic magnetic nanoparticles by decorated with magnetic particles, achieving unique optical functional properties. In this chapter, one-dimensional clay minerals@Fe3O4 nanocomposites were prepared by co-precipitation. The resulting one-dimensional clay minerals@Fe3O4 nanocomposites are superparamagnetic. They can be oriented along the direction of the magnetic field and produce an instantaneously reversible response. These magnetic mineral materials can be dispersed in a dilute acid solution to form stable colloid solutions. These stable colloid solutions produce a similar magnetically controlled liquid crystal with Bragg diffraction under an external magnetic field. Their optical properties are affected by magnetic field intensity, magnetic field direction and solid content. The results show that the functionalization of one-dimensional clay minerals has potential applications in display devices, photonic switches and other fields.