{"title":"数据之旅:通过抽象解释AI工作流","authors":"E. Daga, Paul Groth","doi":"10.3233/sw-233407","DOIUrl":null,"url":null,"abstract":"Artificial intelligence systems are not simply built on a single dataset or trained model. Instead, they are made by complex data science workflows involving multiple datasets, models, preparation scripts, and algorithms. Given this complexity, in order to understand these AI systems, we need to provide explanations of their functioning at higher levels of abstraction. To tackle this problem, we focus on the extraction and representation of data journeys from these workflows. A data journey is a multi-layered semantic representation of data processing activity linked to data science code and assets. We propose an ontology to capture the essential elements of a data journey and an approach to extract such data journeys. Using a corpus of Python notebooks from Kaggle, we show that we are able to capture high-level semantic data flow that is more compact than using the code structure itself. Furthermore, we show that introducing an intermediate knowledge graph representation outperforms models that rely only on the code itself. Finally, we report on a user survey to reflect on the challenges and opportunities presented by computational data journeys for explainable AI.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"6 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Data journeys: Explaining AI workflows through abstraction\",\"authors\":\"E. Daga, Paul Groth\",\"doi\":\"10.3233/sw-233407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence systems are not simply built on a single dataset or trained model. Instead, they are made by complex data science workflows involving multiple datasets, models, preparation scripts, and algorithms. Given this complexity, in order to understand these AI systems, we need to provide explanations of their functioning at higher levels of abstraction. To tackle this problem, we focus on the extraction and representation of data journeys from these workflows. A data journey is a multi-layered semantic representation of data processing activity linked to data science code and assets. We propose an ontology to capture the essential elements of a data journey and an approach to extract such data journeys. Using a corpus of Python notebooks from Kaggle, we show that we are able to capture high-level semantic data flow that is more compact than using the code structure itself. Furthermore, we show that introducing an intermediate knowledge graph representation outperforms models that rely only on the code itself. Finally, we report on a user survey to reflect on the challenges and opportunities presented by computational data journeys for explainable AI.\",\"PeriodicalId\":48694,\"journal\":{\"name\":\"Semantic Web\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semantic Web\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/sw-233407\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-233407","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Data journeys: Explaining AI workflows through abstraction
Artificial intelligence systems are not simply built on a single dataset or trained model. Instead, they are made by complex data science workflows involving multiple datasets, models, preparation scripts, and algorithms. Given this complexity, in order to understand these AI systems, we need to provide explanations of their functioning at higher levels of abstraction. To tackle this problem, we focus on the extraction and representation of data journeys from these workflows. A data journey is a multi-layered semantic representation of data processing activity linked to data science code and assets. We propose an ontology to capture the essential elements of a data journey and an approach to extract such data journeys. Using a corpus of Python notebooks from Kaggle, we show that we are able to capture high-level semantic data flow that is more compact than using the code structure itself. Furthermore, we show that introducing an intermediate knowledge graph representation outperforms models that rely only on the code itself. Finally, we report on a user survey to reflect on the challenges and opportunities presented by computational data journeys for explainable AI.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.