Piotr Prokopowicz, D. Mikołajewski, K. Tyburek, E. Mikołajewska
{"title":"基于模糊数、分形维数和神经网络的脑卒中后康复步态分析","authors":"Piotr Prokopowicz, D. Mikołajewski, K. Tyburek, E. Mikołajewska","doi":"10.24425/BPASTS.2020.131843","DOIUrl":null,"url":null,"abstract":"Computational gait analysis constitutes a useful tool for quantitative assessment of gait disturbances, improving functional diag nosis, assessment of treatment planning, and monitoring of disease progress. There is little research on use of computational gait analysis in neurorehabilitation of post-stroke survivors, but current evidence on its clinical application supports a favorable cost-benefit ratio. The research was conducted among 50 adult people: 25 of them after ischemic stroke constituted the study group, and 25 healthy volunteers constituted the reference group. Study group members were treated for 2 weeks (10 neurorehabilitation sessions). Spatio-temporal gait parameters were assessed before and after therapy and compared using a novel fuzzy-based assessment tool, fractal dimension measurement and gait classification based on artificial neural networks. Measured results of rehabilitation (changes of gait parameters) were statistically relevant and reflected recovery. There is good evidence to extend its use to patients with various gait diseases undergoing neurorehabilitation. However, methodology for properly conducting and interpreting the proposed assessment and analysis procedures, providing validity and reliability of their results remains a key issue. More objective clinical reasoning, based on proposed novel tools, requires further research.","PeriodicalId":55299,"journal":{"name":"Bulletin of the Polish Academy of Sciences-Technical Sciences","volume":"117 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Computational gait analysis for post-stroke rehabilitation purposes using fuzzy numbers, fractal dimension and neural networks\",\"authors\":\"Piotr Prokopowicz, D. Mikołajewski, K. Tyburek, E. Mikołajewska\",\"doi\":\"10.24425/BPASTS.2020.131843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational gait analysis constitutes a useful tool for quantitative assessment of gait disturbances, improving functional diag nosis, assessment of treatment planning, and monitoring of disease progress. There is little research on use of computational gait analysis in neurorehabilitation of post-stroke survivors, but current evidence on its clinical application supports a favorable cost-benefit ratio. The research was conducted among 50 adult people: 25 of them after ischemic stroke constituted the study group, and 25 healthy volunteers constituted the reference group. Study group members were treated for 2 weeks (10 neurorehabilitation sessions). Spatio-temporal gait parameters were assessed before and after therapy and compared using a novel fuzzy-based assessment tool, fractal dimension measurement and gait classification based on artificial neural networks. Measured results of rehabilitation (changes of gait parameters) were statistically relevant and reflected recovery. There is good evidence to extend its use to patients with various gait diseases undergoing neurorehabilitation. However, methodology for properly conducting and interpreting the proposed assessment and analysis procedures, providing validity and reliability of their results remains a key issue. More objective clinical reasoning, based on proposed novel tools, requires further research.\",\"PeriodicalId\":55299,\"journal\":{\"name\":\"Bulletin of the Polish Academy of Sciences-Technical Sciences\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Polish Academy of Sciences-Technical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24425/BPASTS.2020.131843\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Polish Academy of Sciences-Technical Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/BPASTS.2020.131843","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Computational gait analysis for post-stroke rehabilitation purposes using fuzzy numbers, fractal dimension and neural networks
Computational gait analysis constitutes a useful tool for quantitative assessment of gait disturbances, improving functional diag nosis, assessment of treatment planning, and monitoring of disease progress. There is little research on use of computational gait analysis in neurorehabilitation of post-stroke survivors, but current evidence on its clinical application supports a favorable cost-benefit ratio. The research was conducted among 50 adult people: 25 of them after ischemic stroke constituted the study group, and 25 healthy volunteers constituted the reference group. Study group members were treated for 2 weeks (10 neurorehabilitation sessions). Spatio-temporal gait parameters were assessed before and after therapy and compared using a novel fuzzy-based assessment tool, fractal dimension measurement and gait classification based on artificial neural networks. Measured results of rehabilitation (changes of gait parameters) were statistically relevant and reflected recovery. There is good evidence to extend its use to patients with various gait diseases undergoing neurorehabilitation. However, methodology for properly conducting and interpreting the proposed assessment and analysis procedures, providing validity and reliability of their results remains a key issue. More objective clinical reasoning, based on proposed novel tools, requires further research.
期刊介绍:
The Bulletin of the Polish Academy of Sciences: Technical Sciences is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred:
Artificial and Computational Intelligence,
Biomedical Engineering and Biotechnology,
Civil Engineering,
Control, Informatics and Robotics,
Electronics, Telecommunication and Optoelectronics,
Mechanical and Aeronautical Engineering, Thermodynamics,
Material Science and Nanotechnology,
Power Systems and Power Electronics.