EZH2作为实体瘤的治疗靶点

A. Barsotti, M. Ryskin, Kung Pei-Pei, D. Verhelle, R. A. Rollins
{"title":"EZH2作为实体瘤的治疗靶点","authors":"A. Barsotti, M. Ryskin, Kung Pei-Pei, D. Verhelle, R. A. Rollins","doi":"10.14800/CCM.1024","DOIUrl":null,"url":null,"abstract":"Epigenetic alterations are an important hallmark of cancer, and the enzymes that modify histone tails have emerged as attractive drug targets. The histone methyltransferase EZH2 is the catalytic subunit of PRC2, a highly conserved protein complex that regulates gene expression by methylating lysine 27 on histone H3. EZH2 is frequently overexpressed in cancer, and oncogenic gain-of-function mutations have been identified in both hematological malignancies and solid tumors. In cancer cells, the aberrant activity of the enzyme contributes to tumorigenesis by altering cell fate decisions and regulating pathways involved in proliferation, differentiation, and cell migration. Early validation efforts relied on the use of RNAi technology and non-specific small molecule inhibitors to down-regulate EZH2 and destabilize the PRC2 complex. The discovery of catalytic inhibitors of EZH2 has provided an invaluable tool for further elucidating the role of this enzyme in cancer, and preclinical studies in EZH2-mutant non-Hodgkin lymphoma have driven the clinical development of these agents. This review focuses on the use of catalytic small molecule inhibitors to identify solid tumor indications that are dependent on aberrant EZH2 methyltransferase activity. The emerging data suggests that EZH2 inhibitors will have therapeutic potential that extends beyond hematological malignancies to the solid tumor setting.","PeriodicalId":9576,"journal":{"name":"Cancer cell & microenvironment","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"EZH2 as a therapeutic target in solid tumors\",\"authors\":\"A. Barsotti, M. Ryskin, Kung Pei-Pei, D. Verhelle, R. A. Rollins\",\"doi\":\"10.14800/CCM.1024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epigenetic alterations are an important hallmark of cancer, and the enzymes that modify histone tails have emerged as attractive drug targets. The histone methyltransferase EZH2 is the catalytic subunit of PRC2, a highly conserved protein complex that regulates gene expression by methylating lysine 27 on histone H3. EZH2 is frequently overexpressed in cancer, and oncogenic gain-of-function mutations have been identified in both hematological malignancies and solid tumors. In cancer cells, the aberrant activity of the enzyme contributes to tumorigenesis by altering cell fate decisions and regulating pathways involved in proliferation, differentiation, and cell migration. Early validation efforts relied on the use of RNAi technology and non-specific small molecule inhibitors to down-regulate EZH2 and destabilize the PRC2 complex. The discovery of catalytic inhibitors of EZH2 has provided an invaluable tool for further elucidating the role of this enzyme in cancer, and preclinical studies in EZH2-mutant non-Hodgkin lymphoma have driven the clinical development of these agents. This review focuses on the use of catalytic small molecule inhibitors to identify solid tumor indications that are dependent on aberrant EZH2 methyltransferase activity. The emerging data suggests that EZH2 inhibitors will have therapeutic potential that extends beyond hematological malignancies to the solid tumor setting.\",\"PeriodicalId\":9576,\"journal\":{\"name\":\"Cancer cell & microenvironment\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer cell & microenvironment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14800/CCM.1024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer cell & microenvironment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/CCM.1024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

表观遗传改变是癌症的重要标志,修饰组蛋白尾部的酶已成为有吸引力的药物靶点。组蛋白甲基转移酶EZH2是PRC2的催化亚基,PRC2是一种高度保守的蛋白复合物,通过甲基化组蛋白H3上的赖氨酸27来调节基因表达。EZH2在癌症中经常过度表达,并且在血液恶性肿瘤和实体肿瘤中都发现了致癌功能获得突变。在癌细胞中,这种酶的异常活性通过改变细胞命运决定和调节与增殖、分化和细胞迁移有关的途径来促进肿瘤的发生。早期的验证工作依赖于使用RNAi技术和非特异性小分子抑制剂来下调EZH2并破坏PRC2复合物的稳定性。EZH2催化抑制剂的发现为进一步阐明该酶在癌症中的作用提供了宝贵的工具,EZH2突变型非霍奇金淋巴瘤的临床前研究推动了这些药物的临床开发。这篇综述的重点是使用催化小分子抑制剂来识别依赖于异常EZH2甲基转移酶活性的实体肿瘤适应症。新出现的数据表明,EZH2抑制剂将具有从血液系统恶性肿瘤扩展到实体肿瘤的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EZH2 as a therapeutic target in solid tumors
Epigenetic alterations are an important hallmark of cancer, and the enzymes that modify histone tails have emerged as attractive drug targets. The histone methyltransferase EZH2 is the catalytic subunit of PRC2, a highly conserved protein complex that regulates gene expression by methylating lysine 27 on histone H3. EZH2 is frequently overexpressed in cancer, and oncogenic gain-of-function mutations have been identified in both hematological malignancies and solid tumors. In cancer cells, the aberrant activity of the enzyme contributes to tumorigenesis by altering cell fate decisions and regulating pathways involved in proliferation, differentiation, and cell migration. Early validation efforts relied on the use of RNAi technology and non-specific small molecule inhibitors to down-regulate EZH2 and destabilize the PRC2 complex. The discovery of catalytic inhibitors of EZH2 has provided an invaluable tool for further elucidating the role of this enzyme in cancer, and preclinical studies in EZH2-mutant non-Hodgkin lymphoma have driven the clinical development of these agents. This review focuses on the use of catalytic small molecule inhibitors to identify solid tumor indications that are dependent on aberrant EZH2 methyltransferase activity. The emerging data suggests that EZH2 inhibitors will have therapeutic potential that extends beyond hematological malignancies to the solid tumor setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of Monoamine oxidase A (MAO-A) in cancer progression and metastasis Cellular Homeostasis or Tumorigenesis: USP7 Playing the Double Agent Research Highlight: Metastatic Malignant Thymoma to the Abdomen Scaling up to study brca2: the zeppelin zebrafish mutant reveals a role for brca2 in embryonic development of kidney mesoderm. Cryptotanshinone suppresses cell proliferation and induces apoptosis in renal cell carcinoma as an STAT3 inhibitor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1