叔戊基甲基醚反应精馏塔的神经网络与支持向量机预测控制

N. Sharma, Kailash Singh
{"title":"叔戊基甲基醚反应精馏塔的神经网络与支持向量机预测控制","authors":"N. Sharma, Kailash Singh","doi":"10.1080/21642583.2014.924082","DOIUrl":null,"url":null,"abstract":"An algorithm of model predictive control based on artificial neural network and least-square support vector machine method is presented for a class of industrial process with strong nonlinearity such as tert-amyl methyl ether (TAME). Integral constant is added to improve the performance of the controller. In the present work, two different control methodologies neural network predictive control (NNPC) and support vector machine-based predictive control (SVMPC) are implemented and compared with a conventional proportional-integral-derivative (PID) control methodology to a TAME reactive distillation column. The simulation result shows that both NNPC and SVMPC gives better control performance than PID for set-point change as well as for load change of±10% in methanol feed flow rate and molar ratio of methanol to isoamylene in reactor effluent feed.","PeriodicalId":22127,"journal":{"name":"Systems Science & Control Engineering: An Open Access Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Neural network and support vector machine predictive control of tert-amyl methyl ether reactive distillation column\",\"authors\":\"N. Sharma, Kailash Singh\",\"doi\":\"10.1080/21642583.2014.924082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm of model predictive control based on artificial neural network and least-square support vector machine method is presented for a class of industrial process with strong nonlinearity such as tert-amyl methyl ether (TAME). Integral constant is added to improve the performance of the controller. In the present work, two different control methodologies neural network predictive control (NNPC) and support vector machine-based predictive control (SVMPC) are implemented and compared with a conventional proportional-integral-derivative (PID) control methodology to a TAME reactive distillation column. The simulation result shows that both NNPC and SVMPC gives better control performance than PID for set-point change as well as for load change of±10% in methanol feed flow rate and molar ratio of methanol to isoamylene in reactor effluent feed.\",\"PeriodicalId\":22127,\"journal\":{\"name\":\"Systems Science & Control Engineering: An Open Access Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Science & Control Engineering: An Open Access Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21642583.2014.924082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering: An Open Access Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2014.924082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

针对叔戊基甲基醚(TAME)等一类非线性较强的工业过程,提出了一种基于人工神经网络和最小二乘支持向量机的模型预测控制算法。为了提高控制器的性能,增加了积分常数。本文采用神经网络预测控制(NNPC)和基于支持向量机的预测控制(SVMPC)两种不同的控制方法对TAME反应精馏塔进行控制,并与传统的比例-积分-导数(PID)控制方法进行了比较。仿真结果表明,对于甲醇进料流量和反应器出水甲醇与异戊烯摩尔比±10%的负荷变化,NNPC和SVMPC的控制性能均优于PID。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural network and support vector machine predictive control of tert-amyl methyl ether reactive distillation column
An algorithm of model predictive control based on artificial neural network and least-square support vector machine method is presented for a class of industrial process with strong nonlinearity such as tert-amyl methyl ether (TAME). Integral constant is added to improve the performance of the controller. In the present work, two different control methodologies neural network predictive control (NNPC) and support vector machine-based predictive control (SVMPC) are implemented and compared with a conventional proportional-integral-derivative (PID) control methodology to a TAME reactive distillation column. The simulation result shows that both NNPC and SVMPC gives better control performance than PID for set-point change as well as for load change of±10% in methanol feed flow rate and molar ratio of methanol to isoamylene in reactor effluent feed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical solutions to LQG homing problems in one dimension Analysis and circuit design of a fractional-order Lorenz system with different fractional orders A nonlinear oscillator with strange attractors featured Sinai-Ruelle-Bowen measure Research on a chaotic circuit based on an active TiO 2 memristor Robust and resilient state-dependent control of continuous-time nonlinear systems with general performance criteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1