基于探测器-车辆轨迹的大规模网络分析的面向数据的网络聚合

Shohei Yasuda, T. Iryo, Katsuya Sakai, K. Fukushima
{"title":"基于探测器-车辆轨迹的大规模网络分析的面向数据的网络聚合","authors":"Shohei Yasuda, T. Iryo, Katsuya Sakai, K. Fukushima","doi":"10.1109/ITSC.2019.8916931","DOIUrl":null,"url":null,"abstract":"Network representation is required to be simple and to have a high affinity to observed data, considering large-scale transportation network analysis. With the spread of technologies such as probe vehicles, continuous acquisition of detailed traffic data in a large-scale network is now possible. It is needed to link characteristic values to each link of network data for utilizing that. However, handling the data linked to all links of a detailed network can be very difficult when the number of links in the network is very large. In that case, aggregating a network structure is an effective approach, however, existing methods have some issues regarding the subjectivity of network selection or the dependence on the original network structure. In this paper, we developed a method to generate an aggregated network consisting of observed vehicle trajectories. Using observed vehicle trajectories to represent network can improve the objectivity of network representation and relieve the dependence on the original network data. As shown by numerical examples of Kobe area network, the complexity of the structure of the aggregated network is not too simple to lose information under network-wide traffic conditions and not too complex to incur a huge calculating cost.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"33 1","pages":"1677-1682"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Data-oriented network aggregation for large-scale network analysis using probe-vehicle trajectories\",\"authors\":\"Shohei Yasuda, T. Iryo, Katsuya Sakai, K. Fukushima\",\"doi\":\"10.1109/ITSC.2019.8916931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network representation is required to be simple and to have a high affinity to observed data, considering large-scale transportation network analysis. With the spread of technologies such as probe vehicles, continuous acquisition of detailed traffic data in a large-scale network is now possible. It is needed to link characteristic values to each link of network data for utilizing that. However, handling the data linked to all links of a detailed network can be very difficult when the number of links in the network is very large. In that case, aggregating a network structure is an effective approach, however, existing methods have some issues regarding the subjectivity of network selection or the dependence on the original network structure. In this paper, we developed a method to generate an aggregated network consisting of observed vehicle trajectories. Using observed vehicle trajectories to represent network can improve the objectivity of network representation and relieve the dependence on the original network data. As shown by numerical examples of Kobe area network, the complexity of the structure of the aggregated network is not too simple to lose information under network-wide traffic conditions and not too complex to incur a huge calculating cost.\",\"PeriodicalId\":6717,\"journal\":{\"name\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"volume\":\"33 1\",\"pages\":\"1677-1682\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2019.8916931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8916931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

考虑到大规模的交通网络分析,网络表示要求简单且与观测数据具有高亲和力。随着探测车等技术的普及,在大规模网络中连续获取详细的交通数据已经成为可能。需要将特征值链接到网络数据的每个链路,以便对其进行利用。然而,当网络中的链路数量非常大时,处理链接到详细网络的所有链路的数据可能非常困难。在这种情况下,聚合网络结构是一种有效的方法,但现有的方法存在网络选择的主观性或对原有网络结构的依赖性等问题。在本文中,我们开发了一种方法来生成由观察到的车辆轨迹组成的聚合网络。利用观测到的车辆轨迹来表示网络,可以提高网络表示的客观性,减轻对原始网络数据的依赖。通过神户局域网的数值算例可以看出,聚合网络结构的复杂性既不会太简单以致于在全网流量条件下丢失信息,也不会太复杂以致于产生巨大的计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-oriented network aggregation for large-scale network analysis using probe-vehicle trajectories
Network representation is required to be simple and to have a high affinity to observed data, considering large-scale transportation network analysis. With the spread of technologies such as probe vehicles, continuous acquisition of detailed traffic data in a large-scale network is now possible. It is needed to link characteristic values to each link of network data for utilizing that. However, handling the data linked to all links of a detailed network can be very difficult when the number of links in the network is very large. In that case, aggregating a network structure is an effective approach, however, existing methods have some issues regarding the subjectivity of network selection or the dependence on the original network structure. In this paper, we developed a method to generate an aggregated network consisting of observed vehicle trajectories. Using observed vehicle trajectories to represent network can improve the objectivity of network representation and relieve the dependence on the original network data. As shown by numerical examples of Kobe area network, the complexity of the structure of the aggregated network is not too simple to lose information under network-wide traffic conditions and not too complex to incur a huge calculating cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reliable Monocular Ego-Motion Estimation System in Rainy Urban Environments Coarse-to-Fine Luminance Estimation for Low-Light Image Enhancement in Maritime Video Surveillance Vehicle Occupancy Detection for HOV/HOT Lanes Enforcement Road Roughness Crowd-Sensing with Smartphone Apps LACI: Low-effort Automatic Calibration of Infrastructure Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1