使用可穿戴传感器估算能量消耗:一种针对特定活动模型的新方法

M. Altini, J. Penders, O. Amft
{"title":"使用可穿戴传感器估算能量消耗:一种针对特定活动模型的新方法","authors":"M. Altini, J. Penders, O. Amft","doi":"10.1145/2448096.2448097","DOIUrl":null,"url":null,"abstract":"Accurate estimation of Energy Expenditure (EE) in ambulatory settings is a key element in determining the causal relation between aspects of human behavior related to physical activity and health. We present a new methodology for activity-specific EE algorithms. The proposed methodology models activity clusters using specific parameters that capture differences in EE within a cluster, and combines these models with Metabolic Equivalents (METs) derived from the compendium of physical activities. We designed a protocol consisting of a wide set of sedentary, household, lifestyle and gym activities, and developed a new activity-specific EE algorithm applying the proposed methodology. The algorithm uses accelerometer (ACC) and heart rate (HR) data acquired by a single monitoring device, together with anthropometric variables, to predict EE. Our model recognizes six clusters of activities independent of the subject in 52.6 hours of recordings from 19 participants. Increases in EE estimation accuracy ranged from 18 to 31% compared to state of the art single and multi-sensor activity-specific methods.","PeriodicalId":91386,"journal":{"name":"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)","volume":"16 1","pages":"1:1-1:8"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Energy expenditure estimation using wearable sensors: a new methodology for activity-specific models\",\"authors\":\"M. Altini, J. Penders, O. Amft\",\"doi\":\"10.1145/2448096.2448097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate estimation of Energy Expenditure (EE) in ambulatory settings is a key element in determining the causal relation between aspects of human behavior related to physical activity and health. We present a new methodology for activity-specific EE algorithms. The proposed methodology models activity clusters using specific parameters that capture differences in EE within a cluster, and combines these models with Metabolic Equivalents (METs) derived from the compendium of physical activities. We designed a protocol consisting of a wide set of sedentary, household, lifestyle and gym activities, and developed a new activity-specific EE algorithm applying the proposed methodology. The algorithm uses accelerometer (ACC) and heart rate (HR) data acquired by a single monitoring device, together with anthropometric variables, to predict EE. Our model recognizes six clusters of activities independent of the subject in 52.6 hours of recordings from 19 participants. Increases in EE estimation accuracy ranged from 18 to 31% compared to state of the art single and multi-sensor activity-specific methods.\",\"PeriodicalId\":91386,\"journal\":{\"name\":\"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)\",\"volume\":\"16 1\",\"pages\":\"1:1-1:8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2448096.2448097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2448096.2448097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

在动态环境中准确估计能量消耗(EE)是确定与身体活动和健康有关的人类行为方面之间因果关系的关键因素。我们提出了一种针对特定活动的EE算法的新方法。所提出的方法使用特定参数对活动集群进行建模,这些参数捕获集群内EE的差异,并将这些模型与来自身体活动纲要的代谢当量(METs)相结合。我们设计了一个包含一系列广泛的久坐、家庭、生活方式和健身房活动的协议,并应用所提出的方法开发了一个新的特定于活动的EE算法。该算法使用单个监测设备获得的加速度计(ACC)和心率(HR)数据,以及人体测量变量来预测EE。我们的模型从19名参与者的52.6小时录音中识别出6组独立于主题的活动。与最先进的单传感器和多传感器特定活动方法相比,EE估计精度提高了18%到31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy expenditure estimation using wearable sensors: a new methodology for activity-specific models
Accurate estimation of Energy Expenditure (EE) in ambulatory settings is a key element in determining the causal relation between aspects of human behavior related to physical activity and health. We present a new methodology for activity-specific EE algorithms. The proposed methodology models activity clusters using specific parameters that capture differences in EE within a cluster, and combines these models with Metabolic Equivalents (METs) derived from the compendium of physical activities. We designed a protocol consisting of a wide set of sedentary, household, lifestyle and gym activities, and developed a new activity-specific EE algorithm applying the proposed methodology. The algorithm uses accelerometer (ACC) and heart rate (HR) data acquired by a single monitoring device, together with anthropometric variables, to predict EE. Our model recognizes six clusters of activities independent of the subject in 52.6 hours of recordings from 19 participants. Increases in EE estimation accuracy ranged from 18 to 31% compared to state of the art single and multi-sensor activity-specific methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Zero-Effort Camera-Assisted Calibration Techniques for Wearable Motion Sensors. Accurate energy expenditure estimation using smartphone sensors Remote patient monitoring: what impact can data analytics have on cost? PEES: physiology-based end-to-end security for mHealth AsthmaGuru: a framework to improve adherence to asthma medication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1