晕动病中车辆横向加速度与头部倾斜角关系的传递函数模型比较

Yassir Ali, Sarah 'Atifah Saruchi
{"title":"晕动病中车辆横向加速度与头部倾斜角关系的传递函数模型比较","authors":"Yassir Ali, Sarah 'Atifah Saruchi","doi":"10.15282/ijame.19.4.2022.01.0775","DOIUrl":null,"url":null,"abstract":"Motion Sickness (MS) is described as an unpleasant feeling caused by a forceful movement; hence vehicle movement impacts the severity of MS. While negotiating a curve, drivers and passenger tilt their heads differently, affecting their motion sickness incidence (MSI), which is the severity of MS. MS is a negative feeling, that affects occupant’s comfort, and to further understand the correlation between occupants' behavior and vehicle movement in MS and then represent it using mathematical models, it was proven that MSI could be predicted through mathematical models. However, there is an indefinite value between values between occupant’s behavior and vehicle movement. Based on that it is vital to express it the correlation mathematically. An experiment adopted from a prior study was utilized to get the data and develope the mathematical models with different proportions to represent the correlation between vehicle movement and occupant behavior in motion sickness in transfer function equations using system identification (SI), by utilising black-box feature to use the experimental data as input and output to allow SI to predict the transfer function models. The aim of this study is to investigate MS factors in relation to the vehicle movement and occupant’s behavior, to develop multiple transfer function models, to analyze and compare them. The results were obtained in the three different transfer function orders, second, third and fourth order functions for each proportion used for both the driver and passenger, the driver models’ results were in between 64.68%-67.87%, and the passenger results were in between 63.75%-67.93%, after the comparison the highest fits for each order were obtained. The highest fits amongst driver models were 67.87% (4th Order), 66.78% (3rd Order) and 65.17% (2nd Order) and 67.93% (4th Order), 66.3% (3rd Order) and 64.82% (2nd Order) amongst the passenger models. Those fits were then validated via Simulink with unseen data that was not used in identification process, and lastly the models Root Mean Square Error (RMSE) was obtained for all of them to determine their efficiency.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"57 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Transfer Function Models to Represent the Correlation Between Vehicle Lateral Acceleration and Head Tilting Angle in Motion Sickness\",\"authors\":\"Yassir Ali, Sarah 'Atifah Saruchi\",\"doi\":\"10.15282/ijame.19.4.2022.01.0775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motion Sickness (MS) is described as an unpleasant feeling caused by a forceful movement; hence vehicle movement impacts the severity of MS. While negotiating a curve, drivers and passenger tilt their heads differently, affecting their motion sickness incidence (MSI), which is the severity of MS. MS is a negative feeling, that affects occupant’s comfort, and to further understand the correlation between occupants' behavior and vehicle movement in MS and then represent it using mathematical models, it was proven that MSI could be predicted through mathematical models. However, there is an indefinite value between values between occupant’s behavior and vehicle movement. Based on that it is vital to express it the correlation mathematically. An experiment adopted from a prior study was utilized to get the data and develope the mathematical models with different proportions to represent the correlation between vehicle movement and occupant behavior in motion sickness in transfer function equations using system identification (SI), by utilising black-box feature to use the experimental data as input and output to allow SI to predict the transfer function models. The aim of this study is to investigate MS factors in relation to the vehicle movement and occupant’s behavior, to develop multiple transfer function models, to analyze and compare them. The results were obtained in the three different transfer function orders, second, third and fourth order functions for each proportion used for both the driver and passenger, the driver models’ results were in between 64.68%-67.87%, and the passenger results were in between 63.75%-67.93%, after the comparison the highest fits for each order were obtained. The highest fits amongst driver models were 67.87% (4th Order), 66.78% (3rd Order) and 65.17% (2nd Order) and 67.93% (4th Order), 66.3% (3rd Order) and 64.82% (2nd Order) amongst the passenger models. Those fits were then validated via Simulink with unseen data that was not used in identification process, and lastly the models Root Mean Square Error (RMSE) was obtained for all of them to determine their efficiency.\",\"PeriodicalId\":13935,\"journal\":{\"name\":\"International Journal of Automotive and Mechanical Engineering\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.19.4.2022.01.0775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.4.2022.01.0775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

晕动病(MS)被描述为由剧烈运动引起的不愉快的感觉;在过弯道时,驾驶员和乘客的头部倾斜程度不同,从而影响了他们的晕动病发生率(MSI),即MS的严重程度。MS是一种影响乘员舒适度的负面感觉,为了进一步了解MS中乘员行为与车辆运动的相关性,并将其用数学模型表示,证明了MSI可以通过数学模型来预测。然而,乘员行为与车辆运动之间的值是不确定的。在此基础上,如何用数学的方法来表示其相关性就显得尤为重要。采用前人研究的实验方法,利用系统识别(system identification, SI)方法获取数据,建立不同比例的数学模型,在传递函数方程中表示车辆运动与晕车乘员行为之间的相关性,利用黑盒特征将实验数据作为输入和输出,使SI能够预测传递函数模型。本研究的目的是探讨与车辆运动和乘员行为相关的MS因素,建立多个传递函数模型,并对其进行分析和比较。在驾驶员和乘客各比例使用的二阶、三阶和四阶传递函数阶下得到了模型的拟合结果,驾驶员模型的拟合结果在64.68% ~ 67.87%之间,乘客模型的拟合结果在63.75% ~ 67.93%之间,通过比较得到了各阶的最高拟合结果。驾驶员模型的拟合度最高,分别为67.87%(4阶)、66.78%(3阶)和65.17%(2阶);乘用车模型的拟合度最高,分别为67.93%(4阶)、66.3%(3阶)和64.82%(2阶)。然后通过Simulink使用未在识别过程中使用的未见数据验证这些拟合,最后获得所有模型的均方根误差(RMSE),以确定其效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Transfer Function Models to Represent the Correlation Between Vehicle Lateral Acceleration and Head Tilting Angle in Motion Sickness
Motion Sickness (MS) is described as an unpleasant feeling caused by a forceful movement; hence vehicle movement impacts the severity of MS. While negotiating a curve, drivers and passenger tilt their heads differently, affecting their motion sickness incidence (MSI), which is the severity of MS. MS is a negative feeling, that affects occupant’s comfort, and to further understand the correlation between occupants' behavior and vehicle movement in MS and then represent it using mathematical models, it was proven that MSI could be predicted through mathematical models. However, there is an indefinite value between values between occupant’s behavior and vehicle movement. Based on that it is vital to express it the correlation mathematically. An experiment adopted from a prior study was utilized to get the data and develope the mathematical models with different proportions to represent the correlation between vehicle movement and occupant behavior in motion sickness in transfer function equations using system identification (SI), by utilising black-box feature to use the experimental data as input and output to allow SI to predict the transfer function models. The aim of this study is to investigate MS factors in relation to the vehicle movement and occupant’s behavior, to develop multiple transfer function models, to analyze and compare them. The results were obtained in the three different transfer function orders, second, third and fourth order functions for each proportion used for both the driver and passenger, the driver models’ results were in between 64.68%-67.87%, and the passenger results were in between 63.75%-67.93%, after the comparison the highest fits for each order were obtained. The highest fits amongst driver models were 67.87% (4th Order), 66.78% (3rd Order) and 65.17% (2nd Order) and 67.93% (4th Order), 66.3% (3rd Order) and 64.82% (2nd Order) amongst the passenger models. Those fits were then validated via Simulink with unseen data that was not used in identification process, and lastly the models Root Mean Square Error (RMSE) was obtained for all of them to determine their efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
10.00%
发文量
43
审稿时长
20 weeks
期刊介绍: The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.
期刊最新文献
Motion Sickness Susceptibility Among Malaysians When Travelling in a Moving Vehicle The Effect of Motorcycle Helmet Type on Head Response in Oblique Impact Effect of Bilayer Nano-Micro Hydroxyapatite on the Surface Characteristics of Implanted Ti-6Al-4V ELI A Prediction of Graphene Nanoplatelets Addition Effects on Diesel Engine Emissions The Effect of Landing Gear Dimension Variation on the Static Strength and Dynamic Response of Unmanned Aerial Vehicle (UAV)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1