数据支持预测的新视角:混合人工智能专家方法

Amber Geurts, Ralph Gutknecht, Philine Warnke, Arjen Goetheer, Elna Schirrmeister, Babette Bakker, Svetlana Meissner
{"title":"数据支持预测的新视角:混合人工智能专家方法","authors":"Amber Geurts,&nbsp;Ralph Gutknecht,&nbsp;Philine Warnke,&nbsp;Arjen Goetheer,&nbsp;Elna Schirrmeister,&nbsp;Babette Bakker,&nbsp;Svetlana Meissner","doi":"10.1002/ffo2.99","DOIUrl":null,"url":null,"abstract":"<p>This paper outlines new perspectives for data-supported foresight by combining participatory expert-based futures dialogues with the power of artificial intelligence (AI) in what we call the hybrid AI-expert-based foresight approach. To this end, we present a framework of five typical steps in a fully fledged foresight process ranging from scoping to strategizing and show how AI can be integrated into each of the steps to enable the hybrid AI-expert foresight approach. Building on this, we present experiences gained from two recent research projects of TNO and Fraunhofer ISI that deal with aspects of the hybrid AI-expert foresight approach and give insights into the opportunities and challenges of the new perspectives for data-supported foresight that this approach enables. Finally, we summarize open questions and challenges for future research.</p>","PeriodicalId":100567,"journal":{"name":"FUTURES & FORESIGHT SCIENCE","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ffo2.99","citationCount":"9","resultStr":"{\"title\":\"New perspectives for data-supported foresight: The hybrid AI-expert approach\",\"authors\":\"Amber Geurts,&nbsp;Ralph Gutknecht,&nbsp;Philine Warnke,&nbsp;Arjen Goetheer,&nbsp;Elna Schirrmeister,&nbsp;Babette Bakker,&nbsp;Svetlana Meissner\",\"doi\":\"10.1002/ffo2.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper outlines new perspectives for data-supported foresight by combining participatory expert-based futures dialogues with the power of artificial intelligence (AI) in what we call the hybrid AI-expert-based foresight approach. To this end, we present a framework of five typical steps in a fully fledged foresight process ranging from scoping to strategizing and show how AI can be integrated into each of the steps to enable the hybrid AI-expert foresight approach. Building on this, we present experiences gained from two recent research projects of TNO and Fraunhofer ISI that deal with aspects of the hybrid AI-expert foresight approach and give insights into the opportunities and challenges of the new perspectives for data-supported foresight that this approach enables. Finally, we summarize open questions and challenges for future research.</p>\",\"PeriodicalId\":100567,\"journal\":{\"name\":\"FUTURES & FORESIGHT SCIENCE\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ffo2.99\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUTURES & FORESIGHT SCIENCE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ffo2.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUTURES & FORESIGHT SCIENCE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ffo2.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文通过将参与式基于专家的期货对话与人工智能(AI)的力量相结合,概述了数据支持的预测的新视角,即我们所说的基于人工智能专家的混合预测方法。为此,我们提出了一个框架,在一个成熟的预测过程中,包括从范围确定到战略制定的五个典型步骤,并展示了如何将人工智能集成到每个步骤中,以实现混合人工智能专家预测方法。在此基础上,我们介绍了从TNO和Fraunhofer ISI最近的两个研究项目中获得的经验,这些项目涉及混合人工智能专家预测方法的各个方面,并深入了解这种方法所带来的数据支持预测新视角的机遇和挑战。最后,我们总结了未来研究的开放性问题和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New perspectives for data-supported foresight: The hybrid AI-expert approach

This paper outlines new perspectives for data-supported foresight by combining participatory expert-based futures dialogues with the power of artificial intelligence (AI) in what we call the hybrid AI-expert-based foresight approach. To this end, we present a framework of five typical steps in a fully fledged foresight process ranging from scoping to strategizing and show how AI can be integrated into each of the steps to enable the hybrid AI-expert foresight approach. Building on this, we present experiences gained from two recent research projects of TNO and Fraunhofer ISI that deal with aspects of the hybrid AI-expert foresight approach and give insights into the opportunities and challenges of the new perspectives for data-supported foresight that this approach enables. Finally, we summarize open questions and challenges for future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Issue Information Simplification errors in predictive models Don't push the wrong button. The concept of microperspective in futures research Science fiction in military planning—Case allied command transformation and visions of warfare 2036
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1