J. Jeong, Jae Chang Kim, J. Son, K. Pak, Yong Kyun Kim, Ju Hahn Lee
{"title":"600 MeV质子束产生μ子石墨靶的几何优化","authors":"J. Jeong, Jae Chang Kim, J. Son, K. Pak, Yong Kyun Kim, Ju Hahn Lee","doi":"10.1109/NSS/MIC42677.2020.9508097","DOIUrl":null,"url":null,"abstract":"The Rare Isotope Science Project was launched in December 2011, and a heavy-ion accelerator complex in Korea, named RAON, has been designed, including a muon facility for muon spin rotation, relaxation, and resonance (μSR). In this study, the graphite target in RAON was designed to have a rotating ring shape and was cooled by radiative heat transfer, which presents advantages in the cool-down process such as a low-temperature gradient in the target and no necessity of a liquid coolant-cooling system. Monte-Carlo simulations and ANSYS calculations were performed to optimize the proton beam size and the dimensions of the target to produce a sufficient number of surface muons in a thermally stable condition. A comparison between the simulation and the experimental data was also included in this paper in order to obtain a reliable result. The expected number of surface muons was 6.942×108 with a 100 kW proton beam and Δp/p~5%. The maximum temperature was 2012 °K and the maximum stress in the target was 8.1598 kPa with the 400 kW proton beam, which guarantees safety during the replacement cycle of the target.","PeriodicalId":6760,"journal":{"name":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"7 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry Optimization of Muon Production Graphite Target by 600 MeV Proton Beam\",\"authors\":\"J. Jeong, Jae Chang Kim, J. Son, K. Pak, Yong Kyun Kim, Ju Hahn Lee\",\"doi\":\"10.1109/NSS/MIC42677.2020.9508097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Rare Isotope Science Project was launched in December 2011, and a heavy-ion accelerator complex in Korea, named RAON, has been designed, including a muon facility for muon spin rotation, relaxation, and resonance (μSR). In this study, the graphite target in RAON was designed to have a rotating ring shape and was cooled by radiative heat transfer, which presents advantages in the cool-down process such as a low-temperature gradient in the target and no necessity of a liquid coolant-cooling system. Monte-Carlo simulations and ANSYS calculations were performed to optimize the proton beam size and the dimensions of the target to produce a sufficient number of surface muons in a thermally stable condition. A comparison between the simulation and the experimental data was also included in this paper in order to obtain a reliable result. The expected number of surface muons was 6.942×108 with a 100 kW proton beam and Δp/p~5%. The maximum temperature was 2012 °K and the maximum stress in the target was 8.1598 kPa with the 400 kW proton beam, which guarantees safety during the replacement cycle of the target.\",\"PeriodicalId\":6760,\"journal\":{\"name\":\"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"volume\":\"7 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSS/MIC42677.2020.9508097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS/MIC42677.2020.9508097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geometry Optimization of Muon Production Graphite Target by 600 MeV Proton Beam
The Rare Isotope Science Project was launched in December 2011, and a heavy-ion accelerator complex in Korea, named RAON, has been designed, including a muon facility for muon spin rotation, relaxation, and resonance (μSR). In this study, the graphite target in RAON was designed to have a rotating ring shape and was cooled by radiative heat transfer, which presents advantages in the cool-down process such as a low-temperature gradient in the target and no necessity of a liquid coolant-cooling system. Monte-Carlo simulations and ANSYS calculations were performed to optimize the proton beam size and the dimensions of the target to produce a sufficient number of surface muons in a thermally stable condition. A comparison between the simulation and the experimental data was also included in this paper in order to obtain a reliable result. The expected number of surface muons was 6.942×108 with a 100 kW proton beam and Δp/p~5%. The maximum temperature was 2012 °K and the maximum stress in the target was 8.1598 kPa with the 400 kW proton beam, which guarantees safety during the replacement cycle of the target.