磁性壳聚糖纳米复合材料石墨烯基纳米复合衍生物去除水中的黄玉Y

F. A. Shammala, B. Chiswell
{"title":"磁性壳聚糖纳米复合材料石墨烯基纳米复合衍生物去除水中的黄玉Y","authors":"F. A. Shammala, B. Chiswell","doi":"10.21477/IJAPSR.4.2.2","DOIUrl":null,"url":null,"abstract":"This article describes a novel and efficient MCTS/GO nanocomposite for the accumulation and removal of a hazardous azo dye (Chrysoidine Y) from its aqueous solutions. Magnetic Chitosan /graphene oxide (MCTS/GO) nanocomposite adsorbent was prepared by wet-spinning technique, was used as accumulation and removal of Chrysoidine Y from aqueous solution. The structure and morphology of MCTS/GO nanocomposites were investigated using transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectroscopy were carried out on the MCTS/GO before the Chrysoidine Y (CY) accumulation experiments. The adsorption kinetics and isotherm studies were conducted under different conditions (pH = 3-7 and CY concentration = 100-400 mg/L) to examine the accumultion efficiency of the MCTS/GO towards CY in aqueous solution. The kinetics data of the adsorption process were analyzed using different kinetic models in order to investigate the adsorption behavior of CY on MCTS/GO. The results showed that the maximum adsorption capacity of the MCTS/GO nanocomposites towards CY can achieve up to ~700 mg/g for the adsorption at 300 mg/L CY. Kinetic data of adsorption process were found to fit pseudo-second order model as compared with pseudo-first-order model. The intraparticle diffusion model suggested that the adsorption process of MCTS/GO towards CY was dominated by the external mass transfer of CY molecules to the surface of MCTS/GO.","PeriodicalId":13749,"journal":{"name":"INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICAL SCIENCES AND RESEARCH","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Removal of Chrysoidine Y from water by Graphene-based Nanocomposite Derivatives with Magnetic Chitosa Nanocomposite\",\"authors\":\"F. A. Shammala, B. Chiswell\",\"doi\":\"10.21477/IJAPSR.4.2.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes a novel and efficient MCTS/GO nanocomposite for the accumulation and removal of a hazardous azo dye (Chrysoidine Y) from its aqueous solutions. Magnetic Chitosan /graphene oxide (MCTS/GO) nanocomposite adsorbent was prepared by wet-spinning technique, was used as accumulation and removal of Chrysoidine Y from aqueous solution. The structure and morphology of MCTS/GO nanocomposites were investigated using transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectroscopy were carried out on the MCTS/GO before the Chrysoidine Y (CY) accumulation experiments. The adsorption kinetics and isotherm studies were conducted under different conditions (pH = 3-7 and CY concentration = 100-400 mg/L) to examine the accumultion efficiency of the MCTS/GO towards CY in aqueous solution. The kinetics data of the adsorption process were analyzed using different kinetic models in order to investigate the adsorption behavior of CY on MCTS/GO. The results showed that the maximum adsorption capacity of the MCTS/GO nanocomposites towards CY can achieve up to ~700 mg/g for the adsorption at 300 mg/L CY. Kinetic data of adsorption process were found to fit pseudo-second order model as compared with pseudo-first-order model. The intraparticle diffusion model suggested that the adsorption process of MCTS/GO towards CY was dominated by the external mass transfer of CY molecules to the surface of MCTS/GO.\",\"PeriodicalId\":13749,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICAL SCIENCES AND RESEARCH\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICAL SCIENCES AND RESEARCH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21477/IJAPSR.4.2.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICAL SCIENCES AND RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21477/IJAPSR.4.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了一种新型高效的MCTS/GO纳米复合材料,用于从水溶液中积累和去除有害的偶氮染料(Chrysoidine Y)。采用湿纺丝技术制备了磁性壳聚糖/氧化石墨烯(MCTS/GO)纳米复合吸附剂,并将其用于吸附和去除水中的黄嘌呤Y。采用透射电子显微镜(TEM)和傅里叶变换红外光谱(FTIR)对MCTS/GO纳米复合材料的结构和形貌进行了研究,然后进行了黄嘌呤Y (CY)积累实验。在不同条件(pH = 3 ~ 7, CY浓度= 100 ~ 400 mg/L)下进行吸附动力学和等温线研究,考察MCTS/GO对CY的吸附效率。为了研究CY在MCTS/GO上的吸附行为,采用不同的动力学模型对吸附过程的动力学数据进行了分析。结果表明,在CY为300 mg/L时,MCTS/GO纳米复合材料对CY的最大吸附量可达~700 mg/g,吸附过程动力学数据与准一级模型相比符合准二级模型。颗粒内扩散模型表明MCTS/GO对CY的吸附过程主要是CY分子向MCTS/GO表面的外传质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Removal of Chrysoidine Y from water by Graphene-based Nanocomposite Derivatives with Magnetic Chitosa Nanocomposite
This article describes a novel and efficient MCTS/GO nanocomposite for the accumulation and removal of a hazardous azo dye (Chrysoidine Y) from its aqueous solutions. Magnetic Chitosan /graphene oxide (MCTS/GO) nanocomposite adsorbent was prepared by wet-spinning technique, was used as accumulation and removal of Chrysoidine Y from aqueous solution. The structure and morphology of MCTS/GO nanocomposites were investigated using transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectroscopy were carried out on the MCTS/GO before the Chrysoidine Y (CY) accumulation experiments. The adsorption kinetics and isotherm studies were conducted under different conditions (pH = 3-7 and CY concentration = 100-400 mg/L) to examine the accumultion efficiency of the MCTS/GO towards CY in aqueous solution. The kinetics data of the adsorption process were analyzed using different kinetic models in order to investigate the adsorption behavior of CY on MCTS/GO. The results showed that the maximum adsorption capacity of the MCTS/GO nanocomposites towards CY can achieve up to ~700 mg/g for the adsorption at 300 mg/L CY. Kinetic data of adsorption process were found to fit pseudo-second order model as compared with pseudo-first-order model. The intraparticle diffusion model suggested that the adsorption process of MCTS/GO towards CY was dominated by the external mass transfer of CY molecules to the surface of MCTS/GO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PREPARATION OF MICROCRYSTALLINE CELLULOSE FROM DISSOLVING CELLULOSE OBTAINED FROM JUTE FIBERS AND ITS APPLICATION IN THE FORMULATION OF FEXOFENADINE HYDROCHLORIDE TABLET DOSAGE FORM FORMULATION AND EVALUATION OF FAST DISSOLVING TABLET OF LEVOCETIRIZINE DIHYDROCHLORIDE AND MONTELUKAST SODIUM IN-SILICO DOCKING STUDIES OF CARBONIC ANHYDRASE INHIBITORS IN THE MANAGEMENT OF NEUROPATHIC PAIN PREVALENCE AND ASSOCIATED FACTORS OF ANEMIA AMONG UNDER FIVE YEARS OLD CHILDREN WHO ATTENDED SPINGHAR MOMAND CURATIVE AND TEACHING HOSPITAL, JALALABAD CITY TRASTUZUMAB DERUXTECAN: NOVEL ANTIBODY-DRUG CONJUGATE TARGETING HER2 IN PATIENTS WITH GASTRIC ADENOCARCINOMA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1