{"title":"LDHs的特性、制备路线及冶金应用综述","authors":"M. Richetta","doi":"10.4172/2169-0022.1000397","DOIUrl":null,"url":null,"abstract":"The peculiar properties of layered Double Hydroxides (LDH) have progressively drawn the attention of the scientific community. The main characteristic of LDH is the ability to capture anionic species (organic and inorganic) to build different composites. This is made possible by the sandwich structure of the LDH, similar to the brucite architecture, made up of positive charged lamellas interspersed by anions. Several distant fields, ranging from medicine to physics and engineering, exhibit interest in LDH applications. To satisfy all those requirements, energy was spent to sculpt LDHs physical and chemical properties and for designing layered double hydroxides “ad hoc” for different needs and employments. Notably, among the many applications, those related to metallurgical processes and products are of particular interest. This paper presents the characteristics, the main preparation routes and reviews the applications of LDH to metallurgy with some examples taken from the experimental research of the author.","PeriodicalId":16326,"journal":{"name":"Journal of Material Sciences & Engineering","volume":"36 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Characteristics, Preparation Routes and Metallurgical Applications of LDHs: An Overview\",\"authors\":\"M. Richetta\",\"doi\":\"10.4172/2169-0022.1000397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The peculiar properties of layered Double Hydroxides (LDH) have progressively drawn the attention of the scientific community. The main characteristic of LDH is the ability to capture anionic species (organic and inorganic) to build different composites. This is made possible by the sandwich structure of the LDH, similar to the brucite architecture, made up of positive charged lamellas interspersed by anions. Several distant fields, ranging from medicine to physics and engineering, exhibit interest in LDH applications. To satisfy all those requirements, energy was spent to sculpt LDHs physical and chemical properties and for designing layered double hydroxides “ad hoc” for different needs and employments. Notably, among the many applications, those related to metallurgical processes and products are of particular interest. This paper presents the characteristics, the main preparation routes and reviews the applications of LDH to metallurgy with some examples taken from the experimental research of the author.\",\"PeriodicalId\":16326,\"journal\":{\"name\":\"Journal of Material Sciences & Engineering\",\"volume\":\"36 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Material Sciences & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2169-0022.1000397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Material Sciences & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2169-0022.1000397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characteristics, Preparation Routes and Metallurgical Applications of LDHs: An Overview
The peculiar properties of layered Double Hydroxides (LDH) have progressively drawn the attention of the scientific community. The main characteristic of LDH is the ability to capture anionic species (organic and inorganic) to build different composites. This is made possible by the sandwich structure of the LDH, similar to the brucite architecture, made up of positive charged lamellas interspersed by anions. Several distant fields, ranging from medicine to physics and engineering, exhibit interest in LDH applications. To satisfy all those requirements, energy was spent to sculpt LDHs physical and chemical properties and for designing layered double hydroxides “ad hoc” for different needs and employments. Notably, among the many applications, those related to metallurgical processes and products are of particular interest. This paper presents the characteristics, the main preparation routes and reviews the applications of LDH to metallurgy with some examples taken from the experimental research of the author.