商业和开源系统中配置错误的实证研究

Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasundaram, S. Pasupathy
{"title":"商业和开源系统中配置错误的实证研究","authors":"Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasundaram, S. Pasupathy","doi":"10.1145/2043556.2043572","DOIUrl":null,"url":null,"abstract":"Configuration errors (i.e., misconfigurations) are among the dominant causes of system failures. Their importance has inspired many research efforts on detecting, diagnosing, and fixing misconfigurations; such research would benefit greatly from a real-world characteristic study on misconfigurations. Unfortunately, few such studies have been conducted in the past, primarily because historical misconfigurations usually have not been recorded rigorously in databases. In this work, we undertake one of the first attempts to conduct a real-world misconfiguration characteristic study. We study a total of 546 real world misconfigurations, including 309 misconfigurations from a commercial storage system deployed at thousands of customers, and 237 from four widely used open source systems (CentOS, MySQL, Apache HTTP Server, and OpenLDAP). Some of our major findings include: (1) A majority of misconfigurations (70.0%~85.5%) are due to mistakes in setting configuration parameters; however, a significant number of misconfigurations are due to compatibility issues or component configurations (i.e., not parameter-related). (2) 38.1%~53.7% of parameter mistakes are caused by illegal parameters that clearly violate some format or rules, motivating the use of an automatic configuration checker to detect these misconfigurations. (3) A significant percentage (12.2%~29.7%) of parameter-based mistakes are due to inconsistencies between different parameter values. (4) 21.7%~57.3% of the misconfigurations involve configurations external to the examined system, some even on entirely different hosts. (5) A significant portion of misconfigurations can cause hard-to-diagnose failures, such as crashes, hangs, or severe performance degradation, indicating that systems should be better-equipped to handle misconfigurations.","PeriodicalId":20672,"journal":{"name":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","volume":"146 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"263","resultStr":"{\"title\":\"An empirical study on configuration errors in commercial and open source systems\",\"authors\":\"Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasundaram, S. Pasupathy\",\"doi\":\"10.1145/2043556.2043572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Configuration errors (i.e., misconfigurations) are among the dominant causes of system failures. Their importance has inspired many research efforts on detecting, diagnosing, and fixing misconfigurations; such research would benefit greatly from a real-world characteristic study on misconfigurations. Unfortunately, few such studies have been conducted in the past, primarily because historical misconfigurations usually have not been recorded rigorously in databases. In this work, we undertake one of the first attempts to conduct a real-world misconfiguration characteristic study. We study a total of 546 real world misconfigurations, including 309 misconfigurations from a commercial storage system deployed at thousands of customers, and 237 from four widely used open source systems (CentOS, MySQL, Apache HTTP Server, and OpenLDAP). Some of our major findings include: (1) A majority of misconfigurations (70.0%~85.5%) are due to mistakes in setting configuration parameters; however, a significant number of misconfigurations are due to compatibility issues or component configurations (i.e., not parameter-related). (2) 38.1%~53.7% of parameter mistakes are caused by illegal parameters that clearly violate some format or rules, motivating the use of an automatic configuration checker to detect these misconfigurations. (3) A significant percentage (12.2%~29.7%) of parameter-based mistakes are due to inconsistencies between different parameter values. (4) 21.7%~57.3% of the misconfigurations involve configurations external to the examined system, some even on entirely different hosts. (5) A significant portion of misconfigurations can cause hard-to-diagnose failures, such as crashes, hangs, or severe performance degradation, indicating that systems should be better-equipped to handle misconfigurations.\",\"PeriodicalId\":20672,\"journal\":{\"name\":\"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles\",\"volume\":\"146 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"263\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2043556.2043572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2043556.2043572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 263

摘要

配置错误(即配置错误)是导致系统故障的主要原因之一。它们的重要性激发了许多关于检测、诊断和修复错误配置的研究;这种研究将极大地受益于对错误配置的真实特征研究。不幸的是,过去很少进行这样的研究,主要是因为历史上的错误配置通常没有严格记录在数据库中。在这项工作中,我们进行了第一次尝试进行现实世界的错误配置特征研究。我们总共研究了546个实际错误配置,其中309个错误配置来自部署在数千个客户上的商业存储系统,237个错误配置来自四个广泛使用的开源系统(CentOS、MySQL、Apache HTTP Server和OpenLDAP)。主要研究结果包括:(1)大多数配置错误(70.0%~85.5%)是由于配置参数设置错误造成的;然而,大量的错误配置是由于兼容性问题或组件配置(即,与参数无关)。(2) 38.1%~53.7%的参数错误是由非法参数引起的,这些参数明显违反了某些格式或规则,需要使用自动配置检查器来检测这些错误配置。(3) 12.2%~29.7%的参数错误是由于不同参数值不一致造成的。(4) 21.7%~57.3%的错误配置涉及被检查系统外部的配置,有些甚至是在完全不同的主机上。(5)很大一部分错误配置会导致难以诊断的故障,例如崩溃、挂起或严重的性能下降,这表明系统应该更好地处理错误配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An empirical study on configuration errors in commercial and open source systems
Configuration errors (i.e., misconfigurations) are among the dominant causes of system failures. Their importance has inspired many research efforts on detecting, diagnosing, and fixing misconfigurations; such research would benefit greatly from a real-world characteristic study on misconfigurations. Unfortunately, few such studies have been conducted in the past, primarily because historical misconfigurations usually have not been recorded rigorously in databases. In this work, we undertake one of the first attempts to conduct a real-world misconfiguration characteristic study. We study a total of 546 real world misconfigurations, including 309 misconfigurations from a commercial storage system deployed at thousands of customers, and 237 from four widely used open source systems (CentOS, MySQL, Apache HTTP Server, and OpenLDAP). Some of our major findings include: (1) A majority of misconfigurations (70.0%~85.5%) are due to mistakes in setting configuration parameters; however, a significant number of misconfigurations are due to compatibility issues or component configurations (i.e., not parameter-related). (2) 38.1%~53.7% of parameter mistakes are caused by illegal parameters that clearly violate some format or rules, motivating the use of an automatic configuration checker to detect these misconfigurations. (3) A significant percentage (12.2%~29.7%) of parameter-based mistakes are due to inconsistencies between different parameter values. (4) 21.7%~57.3% of the misconfigurations involve configurations external to the examined system, some even on entirely different hosts. (5) A significant portion of misconfigurations can cause hard-to-diagnose failures, such as crashes, hangs, or severe performance degradation, indicating that systems should be better-equipped to handle misconfigurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ResilientFL '21: Proceedings of the First Workshop on Systems Challenges in Reliable and Secure Federated Learning, Virtual Event / Koblenz, Germany, 25 October 2021 SOSP '21: ACM SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event / Koblenz, Germany, October 26-29, 2021 Application Performance Monitoring: Trade-Off between Overhead Reduction and Maintainability Efficient deterministic multithreading through schedule relaxation SILT: a memory-efficient, high-performance key-value store
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1