微工程类器官:体外重建器官水平功能

S. Park, Harshita Sharma, W. Kim, Yonghyun Gwon, H. Kim, Y. Choung, Jangho Kim
{"title":"微工程类器官:体外重建器官水平功能","authors":"S. Park, Harshita Sharma, W. Kim, Yonghyun Gwon, H. Kim, Y. Choung, Jangho Kim","doi":"10.51335/organoid.2023.3.e5","DOIUrl":null,"url":null,"abstract":"In vitro miniaturized organoids are innovative tools with varying applications in biomedical engineering, such as drug testing, disease modeling, organ development studies, and regenerative medicine. However, conventional organoid development has several hurdles in reproducing and reconstituting organ-level functions in vitro, hampering advanced and impactful studies. In this review, we summarize the emerging microengineering-based organoid development techniques aiming to overcome these hurdles. First, we provide basic information on microengineering techniques, including those for reconstituting organoids with organ-level functions. We then focus on recent advances in microengineered organoids with better morphological, physiological, and functional characteristics than conventionally developed organoids. We believe that microengineered organoids possessing organ-level functions in vitro will enable widespread studies in the field of biological sciences and have clinical applications.","PeriodicalId":100198,"journal":{"name":"Brain Organoid and Systems Neuroscience Journal","volume":"245 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microengineered organoids: reconstituting organ-level functions in vitro\",\"authors\":\"S. Park, Harshita Sharma, W. Kim, Yonghyun Gwon, H. Kim, Y. Choung, Jangho Kim\",\"doi\":\"10.51335/organoid.2023.3.e5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In vitro miniaturized organoids are innovative tools with varying applications in biomedical engineering, such as drug testing, disease modeling, organ development studies, and regenerative medicine. However, conventional organoid development has several hurdles in reproducing and reconstituting organ-level functions in vitro, hampering advanced and impactful studies. In this review, we summarize the emerging microengineering-based organoid development techniques aiming to overcome these hurdles. First, we provide basic information on microengineering techniques, including those for reconstituting organoids with organ-level functions. We then focus on recent advances in microengineered organoids with better morphological, physiological, and functional characteristics than conventionally developed organoids. We believe that microengineered organoids possessing organ-level functions in vitro will enable widespread studies in the field of biological sciences and have clinical applications.\",\"PeriodicalId\":100198,\"journal\":{\"name\":\"Brain Organoid and Systems Neuroscience Journal\",\"volume\":\"245 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Organoid and Systems Neuroscience Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51335/organoid.2023.3.e5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Organoid and Systems Neuroscience Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51335/organoid.2023.3.e5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

体外微型类器官是生物医学工程中具有多种应用的创新工具,如药物测试、疾病建模、器官发育研究和再生医学。然而,传统的类器官开发在体外复制和重建器官水平功能方面存在一些障碍,阻碍了先进和有影响力的研究。在这篇综述中,我们总结了新兴的基于微工程的类器官开发技术,旨在克服这些障碍。首先,我们提供了微工程技术的基本信息,包括重建具有器官水平功能的类器官的技术。然后,我们重点介绍了微工程类器官的最新进展,这些类器官具有比常规开发的类器官更好的形态、生理和功能特征。我们相信,体外具有器官水平功能的微工程类器官将使生物科学领域的广泛研究和临床应用成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microengineered organoids: reconstituting organ-level functions in vitro
In vitro miniaturized organoids are innovative tools with varying applications in biomedical engineering, such as drug testing, disease modeling, organ development studies, and regenerative medicine. However, conventional organoid development has several hurdles in reproducing and reconstituting organ-level functions in vitro, hampering advanced and impactful studies. In this review, we summarize the emerging microengineering-based organoid development techniques aiming to overcome these hurdles. First, we provide basic information on microengineering techniques, including those for reconstituting organoids with organ-level functions. We then focus on recent advances in microengineered organoids with better morphological, physiological, and functional characteristics than conventionally developed organoids. We believe that microengineered organoids possessing organ-level functions in vitro will enable widespread studies in the field of biological sciences and have clinical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Organoid intelligence and biocomputing advances: Current steps and future directions Cross-cultural differences in attention: An investigation through computational modelling Editorial Board Contents From peripheral to central (Neuro)degeneration: Is heart-kidney a new axial paradigm for Parkinson’s disease?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1