Livia Maglić, Tomislav Krljan, N. Grubišić, Lovro Maglić
{"title":"估计城市道路运输车辆在里耶卡市街道排放","authors":"Livia Maglić, Tomislav Krljan, N. Grubišić, Lovro Maglić","doi":"10.7307/PTT.V33I2.3613","DOIUrl":null,"url":null,"abstract":"The growing demand for private and public transport services in urban areas requires sophisticated approaches to achieve satisfactory mobility standards in urban areas. Some of the main problems in urban areas today are road congestions and consequently vehicle emissions. The aim of this paper is to propose a methodological approach for the estimation of vehicle emissions. The proposed methodology is based on two interrelated models. The first model is a microscopic simulation SUMO model which can be used to identify the most congested urban areas and roads with critical values of traffic parameters. The second model is the COPERT Street Level for estimating vehicle emissions. The proposed models were tested on the urban area of Rijeka. The results of the microscopic SUMO simulation model indicate six urban roads with the critical traffic flow parameters. On the basis of the six identified urban roads, an estimation of vehicle emissions was carried out for specific time periods: 2017, 2020, 2025, and 2030. According to the results of the second model, the urban road R20-21 was identified as the most polluted road in the urban district of Rijeka. The results indicate that over the period 2017–2030, CO emissions will be reduced on average by 57% on all observed urban roads, CO2 emissions by 20%, and PM emissions by 58%, while the largest reduction of 65% will be in NOx emissions.","PeriodicalId":54546,"journal":{"name":"Promet-Traffic & Transportation","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Estimating Urban Road Transport Vehicles Emissions in the Rijeka City Streets\",\"authors\":\"Livia Maglić, Tomislav Krljan, N. Grubišić, Lovro Maglić\",\"doi\":\"10.7307/PTT.V33I2.3613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing demand for private and public transport services in urban areas requires sophisticated approaches to achieve satisfactory mobility standards in urban areas. Some of the main problems in urban areas today are road congestions and consequently vehicle emissions. The aim of this paper is to propose a methodological approach for the estimation of vehicle emissions. The proposed methodology is based on two interrelated models. The first model is a microscopic simulation SUMO model which can be used to identify the most congested urban areas and roads with critical values of traffic parameters. The second model is the COPERT Street Level for estimating vehicle emissions. The proposed models were tested on the urban area of Rijeka. The results of the microscopic SUMO simulation model indicate six urban roads with the critical traffic flow parameters. On the basis of the six identified urban roads, an estimation of vehicle emissions was carried out for specific time periods: 2017, 2020, 2025, and 2030. According to the results of the second model, the urban road R20-21 was identified as the most polluted road in the urban district of Rijeka. The results indicate that over the period 2017–2030, CO emissions will be reduced on average by 57% on all observed urban roads, CO2 emissions by 20%, and PM emissions by 58%, while the largest reduction of 65% will be in NOx emissions.\",\"PeriodicalId\":54546,\"journal\":{\"name\":\"Promet-Traffic & Transportation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Promet-Traffic & Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.7307/PTT.V33I2.3613\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Promet-Traffic & Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7307/PTT.V33I2.3613","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Estimating Urban Road Transport Vehicles Emissions in the Rijeka City Streets
The growing demand for private and public transport services in urban areas requires sophisticated approaches to achieve satisfactory mobility standards in urban areas. Some of the main problems in urban areas today are road congestions and consequently vehicle emissions. The aim of this paper is to propose a methodological approach for the estimation of vehicle emissions. The proposed methodology is based on two interrelated models. The first model is a microscopic simulation SUMO model which can be used to identify the most congested urban areas and roads with critical values of traffic parameters. The second model is the COPERT Street Level for estimating vehicle emissions. The proposed models were tested on the urban area of Rijeka. The results of the microscopic SUMO simulation model indicate six urban roads with the critical traffic flow parameters. On the basis of the six identified urban roads, an estimation of vehicle emissions was carried out for specific time periods: 2017, 2020, 2025, and 2030. According to the results of the second model, the urban road R20-21 was identified as the most polluted road in the urban district of Rijeka. The results indicate that over the period 2017–2030, CO emissions will be reduced on average by 57% on all observed urban roads, CO2 emissions by 20%, and PM emissions by 58%, while the largest reduction of 65% will be in NOx emissions.
期刊介绍:
This scientific journal publishes scientific papers in the area of technical sciences, field of transport and traffic technology.
The basic guidelines of the journal, which support the mission - promotion of transport science, are: relevancy of published papers and reviewer competency, established identity in the print and publishing profile, as well as other formal and informal details. The journal organisation consists of the Editorial Board, Editors, Reviewer Selection Committee and the Scientific Advisory Committee.
The received papers are subject to peer review in accordance with the recommendations for international scientific journals.
The papers published in the journal are placed in sections which explain their focus in more detail. The sections are: transportation economy, information and communication technology, intelligent transport systems, human-transport interaction, intermodal transport, education in traffic and transport, traffic planning, traffic and environment (ecology), traffic on motorways, traffic in the cities, transport and sustainable development, traffic and space, traffic infrastructure, traffic policy, transport engineering, transport law, safety and security in traffic, transport logistics, transport technology, transport telematics, internal transport, traffic management, science in traffic and transport, traffic engineering, transport in emergency situations, swarm intelligence in transportation engineering.
The Journal also publishes information not subject to review, and classified under the following headings: book and other reviews, symposia, conferences and exhibitions, scientific cooperation, anniversaries, portraits, bibliographies, publisher information, news, etc.