{"title":"基于Teager能量分布的自适应阈值语音增强","authors":"Özkan Arslan, E. Z. Engin","doi":"10.3906/ELK-1804-18","DOIUrl":null,"url":null,"abstract":"This paper introduces a new speech enhancement algorithm based on the adaptive threshold of intrinsic mode functions (IMFs) of noisy signal frames extracted by empirical mode decomposition. Adaptive threshold values are estimated by using the gamma statistical model of Teager energy operated IMFs of noisy speech and estimated noise based on symmetric Kullback–Leibler divergence. The enhanced speech signal is obtained by a semisoft thresholding function, which is utilized by threshold IMF coefficients of noisy speech. The method is tested on the NOIZEUS speech database and the proposed method is compared with wavelet-shrinkage and EMD-shrinkage methods in terms of segmental SNR improvement (SegSNR), weighted spectral slope (WSS), and perceptual evaluation of speech quality (PESQ). Experimental results show that the proposed method provides a higher SegSNR improvement in dB, lower WSS distance, and higher PESQ scores than wavelet-shrinkage and EMD-shrinkage methods. The proposed method shows better performance than traditional threshold-based speech enhancement approaches from high to low SNR levels.","PeriodicalId":49410,"journal":{"name":"Turkish Journal of Electrical Engineering and Computer Sciences","volume":"104 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Speech enhancement using adaptive thresholding based on gamma distribution of Teager energy operated intrinsic mode functions\",\"authors\":\"Özkan Arslan, E. Z. Engin\",\"doi\":\"10.3906/ELK-1804-18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new speech enhancement algorithm based on the adaptive threshold of intrinsic mode functions (IMFs) of noisy signal frames extracted by empirical mode decomposition. Adaptive threshold values are estimated by using the gamma statistical model of Teager energy operated IMFs of noisy speech and estimated noise based on symmetric Kullback–Leibler divergence. The enhanced speech signal is obtained by a semisoft thresholding function, which is utilized by threshold IMF coefficients of noisy speech. The method is tested on the NOIZEUS speech database and the proposed method is compared with wavelet-shrinkage and EMD-shrinkage methods in terms of segmental SNR improvement (SegSNR), weighted spectral slope (WSS), and perceptual evaluation of speech quality (PESQ). Experimental results show that the proposed method provides a higher SegSNR improvement in dB, lower WSS distance, and higher PESQ scores than wavelet-shrinkage and EMD-shrinkage methods. The proposed method shows better performance than traditional threshold-based speech enhancement approaches from high to low SNR levels.\",\"PeriodicalId\":49410,\"journal\":{\"name\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3906/ELK-1804-18\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Electrical Engineering and Computer Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3906/ELK-1804-18","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Speech enhancement using adaptive thresholding based on gamma distribution of Teager energy operated intrinsic mode functions
This paper introduces a new speech enhancement algorithm based on the adaptive threshold of intrinsic mode functions (IMFs) of noisy signal frames extracted by empirical mode decomposition. Adaptive threshold values are estimated by using the gamma statistical model of Teager energy operated IMFs of noisy speech and estimated noise based on symmetric Kullback–Leibler divergence. The enhanced speech signal is obtained by a semisoft thresholding function, which is utilized by threshold IMF coefficients of noisy speech. The method is tested on the NOIZEUS speech database and the proposed method is compared with wavelet-shrinkage and EMD-shrinkage methods in terms of segmental SNR improvement (SegSNR), weighted spectral slope (WSS), and perceptual evaluation of speech quality (PESQ). Experimental results show that the proposed method provides a higher SegSNR improvement in dB, lower WSS distance, and higher PESQ scores than wavelet-shrinkage and EMD-shrinkage methods. The proposed method shows better performance than traditional threshold-based speech enhancement approaches from high to low SNR levels.
期刊介绍:
The Turkish Journal of Electrical Engineering & Computer Sciences is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK)
Accepts English-language manuscripts in the areas of power and energy, environmental sustainability and energy efficiency, electronics, industry applications, control systems, information and systems, applied electromagnetics, communications, signal and image processing, tomographic image reconstruction, face recognition, biometrics, speech processing, video processing and analysis, object recognition, classification, feature extraction, parallel and distributed computing, cognitive systems, interaction, robotics, digital libraries and content, personalized healthcare, ICT for mobility, sensors, and artificial intelligence.
Contribution is open to researchers of all nationalities.