激发态动力学中绝热表示的移动粗绝热替代

Rosa Maskri, Loïc Joubert-Doriol
{"title":"激发态动力学中绝热表示的移动粗绝热替代","authors":"Rosa Maskri, Loïc Joubert-Doriol","doi":"10.1098/rsta.2020.0379","DOIUrl":null,"url":null,"abstract":"The choice of the electronic representation in on-the-fly quantum dynamics is crucial. The adiabatic representation is appealing since adiabatic states are readily available from quantum chemistry packages. The nuclear wavepackets are then expanded in a basis of Gaussian functions, which follow trajectories to explore the potential energy surfaces and approximate the potential using a local expansion of the adiabatic quantities. Nevertheless, the adiabatic representation is plagued with severe limitations when conical intersections are involved: the diagonal Born–Oppenheimer corrections (DBOCs) are non-integrable, and the geometric phase effect on the nuclear wavepackets cannot be accounted for unless a model is available. To circumvent these difficulties, the moving crude adiabatic (MCA) representation was proposed and successfully tested in low energy dynamics where the wavepacket skirts the conical intersection. We assess the MCA representation in the case of non-adiabatic transitions through conical intersections. First, we show that using a Gaussian basis in the adiabatic representation indeed exhibits the aforementioned difficulties with a special emphasis on the possibility to regularize the DBOC terms. Then, we show that MCA is indeed able to properly model non-adiabatic transitions. Tests are done on linear vibronic coupling models for the bis(methylene) adamantyl cation and the butatriene cation. This article is part of the theme issue ‘Chemistry without the Born–Oppenheimer approximation’.","PeriodicalId":20020,"journal":{"name":"Philosophical Transactions of the Royal Society A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"The moving crude adiabatic alternative to the adiabatic representation in excited state dynamics\",\"authors\":\"Rosa Maskri, Loïc Joubert-Doriol\",\"doi\":\"10.1098/rsta.2020.0379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The choice of the electronic representation in on-the-fly quantum dynamics is crucial. The adiabatic representation is appealing since adiabatic states are readily available from quantum chemistry packages. The nuclear wavepackets are then expanded in a basis of Gaussian functions, which follow trajectories to explore the potential energy surfaces and approximate the potential using a local expansion of the adiabatic quantities. Nevertheless, the adiabatic representation is plagued with severe limitations when conical intersections are involved: the diagonal Born–Oppenheimer corrections (DBOCs) are non-integrable, and the geometric phase effect on the nuclear wavepackets cannot be accounted for unless a model is available. To circumvent these difficulties, the moving crude adiabatic (MCA) representation was proposed and successfully tested in low energy dynamics where the wavepacket skirts the conical intersection. We assess the MCA representation in the case of non-adiabatic transitions through conical intersections. First, we show that using a Gaussian basis in the adiabatic representation indeed exhibits the aforementioned difficulties with a special emphasis on the possibility to regularize the DBOC terms. Then, we show that MCA is indeed able to properly model non-adiabatic transitions. Tests are done on linear vibronic coupling models for the bis(methylene) adamantyl cation and the butatriene cation. This article is part of the theme issue ‘Chemistry without the Born–Oppenheimer approximation’.\",\"PeriodicalId\":20020,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2020.0379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rsta.2020.0379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在动态量子动力学中,电子表示的选择至关重要。绝热表示很有吸引力,因为绝热状态很容易从量子化学包中得到。然后,核波包在高斯函数的基础上展开,高斯函数沿着轨迹探索势能面,并使用绝热量的局部展开近似势能。然而,当涉及圆锥相交时,绝热表示受到严重限制:对角线Born-Oppenheimer校正(DBOCs)不可积,并且除非有可用的模型,否则无法解释核波包的几何相位效应。为了克服这些困难,提出了移动粗绝热(MCA)表示,并在低能动力学中成功地进行了测试,其中波包沿圆锥相交。我们评估了在非绝热过渡的情况下,通过锥形相交的MCA表示。首先,我们证明在绝热表示中使用高斯基确实表现出上述困难,特别强调了正则化DBOC项的可能性。然后,我们证明了MCA确实能够正确地模拟非绝热转变。对双(亚甲基)金刚烷基阳离子和丁腈基阳离子的线性振动耦合模型进行了试验。这篇文章是主题问题“没有波恩-奥本海默近似的化学”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The moving crude adiabatic alternative to the adiabatic representation in excited state dynamics
The choice of the electronic representation in on-the-fly quantum dynamics is crucial. The adiabatic representation is appealing since adiabatic states are readily available from quantum chemistry packages. The nuclear wavepackets are then expanded in a basis of Gaussian functions, which follow trajectories to explore the potential energy surfaces and approximate the potential using a local expansion of the adiabatic quantities. Nevertheless, the adiabatic representation is plagued with severe limitations when conical intersections are involved: the diagonal Born–Oppenheimer corrections (DBOCs) are non-integrable, and the geometric phase effect on the nuclear wavepackets cannot be accounted for unless a model is available. To circumvent these difficulties, the moving crude adiabatic (MCA) representation was proposed and successfully tested in low energy dynamics where the wavepacket skirts the conical intersection. We assess the MCA representation in the case of non-adiabatic transitions through conical intersections. First, we show that using a Gaussian basis in the adiabatic representation indeed exhibits the aforementioned difficulties with a special emphasis on the possibility to regularize the DBOC terms. Then, we show that MCA is indeed able to properly model non-adiabatic transitions. Tests are done on linear vibronic coupling models for the bis(methylene) adamantyl cation and the butatriene cation. This article is part of the theme issue ‘Chemistry without the Born–Oppenheimer approximation’.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The contribution of a catchment-scale advice network to successful agricultural drought adaptation in Northern Thailand Using machine learning to identify novel hydroclimate states The economics of managing water crises Benchmark worst droughts during the summer monsoon in India Status and prospects for drought forecasting: opportunities in artificial intelligence and hybrid physical–statistical forecasting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1