Felix O. Okoro, E. Arochukwu, Segun Adomokhai, L. Dennar
{"title":"面向生产优化的前端集成生产系统建模——来自尼日尔三角洲油田的经验","authors":"Felix O. Okoro, E. Arochukwu, Segun Adomokhai, L. Dennar","doi":"10.2118/207124-ms","DOIUrl":null,"url":null,"abstract":"\n The M001 project involved the hook-up of 12 wells (17 conduits) which were drilled and completed between year 2000 and 2005 but were closed-in for operational reasons, until year 2019 when the first seven (7) conduits on cluster MX1 were cleaned up successfully. The seven conduits (Well-A, Well-B, Well-C, Well-D, Well-E, Well-F & Well-G) were expected to flow via three 8\" bulk lines. Post well open-up and handover to production, significant bulking / backing out effects were observed.\n An average Flow Line Pressure (FLP) of ∼22 bar was recorded on the flowlines, hence limiting the capacity to bulk the wells, [FLP increases towards Flowing Tubing Head Pressure (FTHP) hence, pushing the well out of the critical flow envelope as FTHP<<1.7FLP]. Due to this challenge, total production from Cluster MX1 was sub-optimal with only five (5) conduits out of seven (7) able to flow due to bulking and backing out effect. The sub-optimal performance from the conduits were investigated using the Integrated Production System Model (IPSM) / PIPESIM models. Four different scenarios were run in the model and the calibrated IPSM model indicated all 7 conduits should flow if there are no surface restrictions. The model identified pressure, mass and rate imbalances in the integrated system and suggested the presence of a restriction at the manifold, causing sub-optimal production from the wells.\n The model outcome triggered an onsite investigation / troubleshooting from the wellhead to the manifold at the facilities end where an adjustable choke was identified in the ligaments of the manifold. In line with process safety requirements, a risk assessment was carried out and a Management of Change (MOC) raised to remove the adjustable choke at the manifold.\n Post implementation of the intervention, all the seven (7) conduits produced without any bulking effect. Total production realized from the seven (7) conduits post execution of the recommended action is ca. 9.3 kbopd against 5.2 kbopd pre-intervention. A total of ca. 4.1 kbopd production gain was realized and 10 mln USD proposed for additional bulkline was saved.","PeriodicalId":10899,"journal":{"name":"Day 2 Tue, August 03, 2021","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Front-End Integrated Production System Modelling for Production Optimization – Experience from a Niger Delta Field\",\"authors\":\"Felix O. Okoro, E. Arochukwu, Segun Adomokhai, L. Dennar\",\"doi\":\"10.2118/207124-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The M001 project involved the hook-up of 12 wells (17 conduits) which were drilled and completed between year 2000 and 2005 but were closed-in for operational reasons, until year 2019 when the first seven (7) conduits on cluster MX1 were cleaned up successfully. The seven conduits (Well-A, Well-B, Well-C, Well-D, Well-E, Well-F & Well-G) were expected to flow via three 8\\\" bulk lines. Post well open-up and handover to production, significant bulking / backing out effects were observed.\\n An average Flow Line Pressure (FLP) of ∼22 bar was recorded on the flowlines, hence limiting the capacity to bulk the wells, [FLP increases towards Flowing Tubing Head Pressure (FTHP) hence, pushing the well out of the critical flow envelope as FTHP<<1.7FLP]. Due to this challenge, total production from Cluster MX1 was sub-optimal with only five (5) conduits out of seven (7) able to flow due to bulking and backing out effect. The sub-optimal performance from the conduits were investigated using the Integrated Production System Model (IPSM) / PIPESIM models. Four different scenarios were run in the model and the calibrated IPSM model indicated all 7 conduits should flow if there are no surface restrictions. The model identified pressure, mass and rate imbalances in the integrated system and suggested the presence of a restriction at the manifold, causing sub-optimal production from the wells.\\n The model outcome triggered an onsite investigation / troubleshooting from the wellhead to the manifold at the facilities end where an adjustable choke was identified in the ligaments of the manifold. In line with process safety requirements, a risk assessment was carried out and a Management of Change (MOC) raised to remove the adjustable choke at the manifold.\\n Post implementation of the intervention, all the seven (7) conduits produced without any bulking effect. Total production realized from the seven (7) conduits post execution of the recommended action is ca. 9.3 kbopd against 5.2 kbopd pre-intervention. A total of ca. 4.1 kbopd production gain was realized and 10 mln USD proposed for additional bulkline was saved.\",\"PeriodicalId\":10899,\"journal\":{\"name\":\"Day 2 Tue, August 03, 2021\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, August 03, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/207124-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, August 03, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207124-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Front-End Integrated Production System Modelling for Production Optimization – Experience from a Niger Delta Field
The M001 project involved the hook-up of 12 wells (17 conduits) which were drilled and completed between year 2000 and 2005 but were closed-in for operational reasons, until year 2019 when the first seven (7) conduits on cluster MX1 were cleaned up successfully. The seven conduits (Well-A, Well-B, Well-C, Well-D, Well-E, Well-F & Well-G) were expected to flow via three 8" bulk lines. Post well open-up and handover to production, significant bulking / backing out effects were observed.
An average Flow Line Pressure (FLP) of ∼22 bar was recorded on the flowlines, hence limiting the capacity to bulk the wells, [FLP increases towards Flowing Tubing Head Pressure (FTHP) hence, pushing the well out of the critical flow envelope as FTHP<<1.7FLP]. Due to this challenge, total production from Cluster MX1 was sub-optimal with only five (5) conduits out of seven (7) able to flow due to bulking and backing out effect. The sub-optimal performance from the conduits were investigated using the Integrated Production System Model (IPSM) / PIPESIM models. Four different scenarios were run in the model and the calibrated IPSM model indicated all 7 conduits should flow if there are no surface restrictions. The model identified pressure, mass and rate imbalances in the integrated system and suggested the presence of a restriction at the manifold, causing sub-optimal production from the wells.
The model outcome triggered an onsite investigation / troubleshooting from the wellhead to the manifold at the facilities end where an adjustable choke was identified in the ligaments of the manifold. In line with process safety requirements, a risk assessment was carried out and a Management of Change (MOC) raised to remove the adjustable choke at the manifold.
Post implementation of the intervention, all the seven (7) conduits produced without any bulking effect. Total production realized from the seven (7) conduits post execution of the recommended action is ca. 9.3 kbopd against 5.2 kbopd pre-intervention. A total of ca. 4.1 kbopd production gain was realized and 10 mln USD proposed for additional bulkline was saved.