{"title":"车间空气污染的数学建模","authors":"M. Biliaiev, O. Berlov, V. Kozachyna, V. Tsurkan","doi":"10.33271/crpnmu/69.254","DOIUrl":null,"url":null,"abstract":"Purpose. Development of CFD model and computer code for the analysis and forecasting of the process of formation of areas of chemical contamination in the workplace in the event of an emergency leak of a hazardous substance, allowing to take into account the influence of obstacles and the operation of the ventilation system on this process. The methods. The masstransfer equation is used to calculate the process of formation of areas of chemical contamination in the workplace over time. Navier-Stokes equations are used to solve the problem of aerodynamics – determination of the air flow velocity field in the room. For the numerical solution of modeling equations, finite-difference splitting schemes are used. On the basis of the developed numerical model, a computer code was created for conducting computational experiments Findings. An effective CFD model and computer code were created, which allow to quickly analyze the level of chemical pollution of working areas in possible emergency situations accompanied by the emission of dangerous substances. The results of the computational experiment are presented. The originality. An effective CFD model has been developed, which allows to calculate the dynamics of the formation of areas of chemical air pollution in the workplace in the event of an emergency leak of a chemically hazardous substance Practical implementation. On the basis of the proposed CFD model, a computer code has been developed that allows determining the dynamics of the formation of areas of contamination in the workplace during the emergency emission of hazardous substances. The model can be used to analyze the risk of toxic damage to personnel in the workplace","PeriodicalId":10466,"journal":{"name":"Collection of Research Papers of the National Mining University","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modeling of air pollution in working room\",\"authors\":\"M. Biliaiev, O. Berlov, V. Kozachyna, V. Tsurkan\",\"doi\":\"10.33271/crpnmu/69.254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose. Development of CFD model and computer code for the analysis and forecasting of the process of formation of areas of chemical contamination in the workplace in the event of an emergency leak of a hazardous substance, allowing to take into account the influence of obstacles and the operation of the ventilation system on this process. The methods. The masstransfer equation is used to calculate the process of formation of areas of chemical contamination in the workplace over time. Navier-Stokes equations are used to solve the problem of aerodynamics – determination of the air flow velocity field in the room. For the numerical solution of modeling equations, finite-difference splitting schemes are used. On the basis of the developed numerical model, a computer code was created for conducting computational experiments Findings. An effective CFD model and computer code were created, which allow to quickly analyze the level of chemical pollution of working areas in possible emergency situations accompanied by the emission of dangerous substances. The results of the computational experiment are presented. The originality. An effective CFD model has been developed, which allows to calculate the dynamics of the formation of areas of chemical air pollution in the workplace in the event of an emergency leak of a chemically hazardous substance Practical implementation. On the basis of the proposed CFD model, a computer code has been developed that allows determining the dynamics of the formation of areas of contamination in the workplace during the emergency emission of hazardous substances. The model can be used to analyze the risk of toxic damage to personnel in the workplace\",\"PeriodicalId\":10466,\"journal\":{\"name\":\"Collection of Research Papers of the National Mining University\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collection of Research Papers of the National Mining University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33271/crpnmu/69.254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of Research Papers of the National Mining University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33271/crpnmu/69.254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mathematical modeling of air pollution in working room
Purpose. Development of CFD model and computer code for the analysis and forecasting of the process of formation of areas of chemical contamination in the workplace in the event of an emergency leak of a hazardous substance, allowing to take into account the influence of obstacles and the operation of the ventilation system on this process. The methods. The masstransfer equation is used to calculate the process of formation of areas of chemical contamination in the workplace over time. Navier-Stokes equations are used to solve the problem of aerodynamics – determination of the air flow velocity field in the room. For the numerical solution of modeling equations, finite-difference splitting schemes are used. On the basis of the developed numerical model, a computer code was created for conducting computational experiments Findings. An effective CFD model and computer code were created, which allow to quickly analyze the level of chemical pollution of working areas in possible emergency situations accompanied by the emission of dangerous substances. The results of the computational experiment are presented. The originality. An effective CFD model has been developed, which allows to calculate the dynamics of the formation of areas of chemical air pollution in the workplace in the event of an emergency leak of a chemically hazardous substance Practical implementation. On the basis of the proposed CFD model, a computer code has been developed that allows determining the dynamics of the formation of areas of contamination in the workplace during the emergency emission of hazardous substances. The model can be used to analyze the risk of toxic damage to personnel in the workplace