基于云的课程内容的学生技能驱动个性化框架

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Software Engineering and Knowledge Engineering Pub Date : 2023-02-28 DOI:10.1142/s0218194023500092
A. Qaffas, I. Alharbi, A. Idrees, S. Kholeif
{"title":"基于云的课程内容的学生技能驱动个性化框架","authors":"A. Qaffas, I. Alharbi, A. Idrees, S. Kholeif","doi":"10.1142/s0218194023500092","DOIUrl":null,"url":null,"abstract":"Engaging students' personalized data in the aspects of education has been on focus by different researchers. This paper considers it vital for exploring the student's progress, moreover, it could predict the student's level which consequently leads to identifying the required student material to raise his current education level. Although the topic has been vital before the COVID-19 pandemic, however, the importance of the topic has increased exponentially ever since. The research supports the decision-makers in educational institutions as considering personalized data for the student's educational tasks and activities proved the positive impact of raising the student level. The paper proposes a framework that considers the students' personal data in predicting their learning skills as well as their educational level. The research included engaging five well-known clustering algorithms, one of the most successful classification algorithms, and a set of 10 features selection techniques. The research applied two main experiment phases, the first phase focused on predicting the students' learning skills, and the second focused on predicting the students' level. Two datasets are involved in the experiments and their sources are mentioned. The research revealed the success of the clustering and prediction tasks by applying the selected techniques to the datasets. The research concluded that the highest clustering algorithm accuracy is enhanced k-means (EKM) and the highest contributing features selection method is the evolutionary computation method. © 2023 World Scientific Publishing Company.","PeriodicalId":50288,"journal":{"name":"International Journal of Software Engineering and Knowledge Engineering","volume":"344 1","pages":"603-617"},"PeriodicalIF":0.6000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Proposed Framework for Student's Skills-Driven Personalization of Cloud-Based Course Content\",\"authors\":\"A. Qaffas, I. Alharbi, A. Idrees, S. Kholeif\",\"doi\":\"10.1142/s0218194023500092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engaging students' personalized data in the aspects of education has been on focus by different researchers. This paper considers it vital for exploring the student's progress, moreover, it could predict the student's level which consequently leads to identifying the required student material to raise his current education level. Although the topic has been vital before the COVID-19 pandemic, however, the importance of the topic has increased exponentially ever since. The research supports the decision-makers in educational institutions as considering personalized data for the student's educational tasks and activities proved the positive impact of raising the student level. The paper proposes a framework that considers the students' personal data in predicting their learning skills as well as their educational level. The research included engaging five well-known clustering algorithms, one of the most successful classification algorithms, and a set of 10 features selection techniques. The research applied two main experiment phases, the first phase focused on predicting the students' learning skills, and the second focused on predicting the students' level. Two datasets are involved in the experiments and their sources are mentioned. The research revealed the success of the clustering and prediction tasks by applying the selected techniques to the datasets. The research concluded that the highest clustering algorithm accuracy is enhanced k-means (EKM) and the highest contributing features selection method is the evolutionary computation method. © 2023 World Scientific Publishing Company.\",\"PeriodicalId\":50288,\"journal\":{\"name\":\"International Journal of Software Engineering and Knowledge Engineering\",\"volume\":\"344 1\",\"pages\":\"603-617\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Software Engineering and Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218194023500092\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Software Engineering and Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0218194023500092","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

将学生的个性化数据融入教育的各个方面一直是不同研究者关注的焦点。本文认为,它对探索学生的进步至关重要,而且,它可以预测学生的水平,从而导致确定所需的学生材料,以提高他目前的教育水平。尽管该主题在2019冠状病毒病大流行之前至关重要,但自那时以来,该主题的重要性呈指数级增长。本研究支持教育机构决策者在考虑学生教育任务和活动的个性化数据时,证明了提高学生水平的积极影响。本文提出了一个考虑学生个人数据来预测其学习技能和教育水平的框架。该研究涉及五种知名的聚类算法,最成功的分类算法之一,以及一组10个特征选择技术。本研究采用了两个主要的实验阶段,第一阶段侧重于预测学生的学习技能,第二阶段侧重于预测学生的水平。实验涉及两个数据集,并提到了它们的来源。研究表明,通过将所选择的技术应用于数据集,聚类和预测任务取得了成功。研究表明,增强k-means (EKM)聚类算法准确率最高,进化计算方法是贡献最大的特征选择方法。©2023世界科学出版公司。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Proposed Framework for Student's Skills-Driven Personalization of Cloud-Based Course Content
Engaging students' personalized data in the aspects of education has been on focus by different researchers. This paper considers it vital for exploring the student's progress, moreover, it could predict the student's level which consequently leads to identifying the required student material to raise his current education level. Although the topic has been vital before the COVID-19 pandemic, however, the importance of the topic has increased exponentially ever since. The research supports the decision-makers in educational institutions as considering personalized data for the student's educational tasks and activities proved the positive impact of raising the student level. The paper proposes a framework that considers the students' personal data in predicting their learning skills as well as their educational level. The research included engaging five well-known clustering algorithms, one of the most successful classification algorithms, and a set of 10 features selection techniques. The research applied two main experiment phases, the first phase focused on predicting the students' learning skills, and the second focused on predicting the students' level. Two datasets are involved in the experiments and their sources are mentioned. The research revealed the success of the clustering and prediction tasks by applying the selected techniques to the datasets. The research concluded that the highest clustering algorithm accuracy is enhanced k-means (EKM) and the highest contributing features selection method is the evolutionary computation method. © 2023 World Scientific Publishing Company.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
71
审稿时长
16 months
期刊介绍: The International Journal of Software Engineering and Knowledge Engineering is intended to serve as a forum for researchers, practitioners, and developers to exchange ideas and results for the advancement of software engineering and knowledge engineering. Three types of papers will be published: Research papers reporting original research results Technology trend surveys reviewing an area of research in software engineering and knowledge engineering Survey articles surveying a broad area in software engineering and knowledge engineering In addition, tool reviews (no more than three manuscript pages) and book reviews (no more than two manuscript pages) are also welcome. A central theme of this journal is the interplay between software engineering and knowledge engineering: how knowledge engineering methods can be applied to software engineering, and vice versa. The journal publishes papers in the areas of software engineering methods and practices, object-oriented systems, rapid prototyping, software reuse, cleanroom software engineering, stepwise refinement/enhancement, formal methods of specification, ambiguity in software development, impact of CASE on software development life cycle, knowledge engineering methods and practices, logic programming, expert systems, knowledge-based systems, distributed knowledge-based systems, deductive database systems, knowledge representations, knowledge-based systems in language translation & processing, software and knowledge-ware maintenance, reverse engineering in software design, and applications in various domains of interest.
期刊最新文献
Modeling and Control of Drinking Water Supply Infrastructures Through Multi-Agent Systems for Sustainability MOID: Many-to-One Patent Graph Embedding Base Infringement Detection Model EFSP: an enhanced full scrum process model Exploring the Impact of Vocabulary Techniques on Code Completion: A Comparative Approach Appling Scrum to knowledge transfer among software developers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1